PAC Learning

Adopt slides by Alexander Ihler and Andrew Moore

- We've seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - "Representational Power"
- Different learners have different power
- Usual trade-off:
 - More power = represent more complex systems, might overfit
 - Less power = won't overfit, but may not find "best" learner
- How can we balance the trade-off in theory?
 - Quantify the performance of the model
 - Quantify representational power

Some Notions

- Define "risk" and "empirical risk"
 - These are just "long term" test and observed training error
 - Risk, i.e., test error, true error

$$R(\theta) = \text{TestError} = \mathbb{E}[\mathbb{1}[c \neq \hat{c}(x; \theta)]]$$

Empirical risk, i.e., training error

$$R^{\text{emp}}(\theta) = \text{TrainError} = \frac{1}{m} \sum_{i} \mathbb{1}[c^{(i)} \neq \hat{c}(x^{(i)}; \theta)]$$

PAC Learning

- PAC: Probably Approximately Correct
- The **PAC criterion** is that a learner produces a highly accurate hypothesis with high probability: $P(|R(\theta) R^{emp}(\theta)| \le \epsilon) \ge 1 \delta$
- Given ϵ, δ , under what conditions a learner is PAC?
 - Learner complexity

— ...

Bounding excess risk

• Given ϵ , δ , bound the difference between risk $R(\theta)$ and empirical risk $R^{emp}(\theta)$.

- Hoeffding's inequality
 - Let $x^{(1)}, \dots, x^{(m)}$ be independent random variables in [0,1]
 - $-\bar{X} = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right)$
 - Then
 - $-P(\mathrm{E}[\bar{X}] \bar{X} \ge \epsilon) \le e^{-2m\epsilon^2}$
- Union bound
 - If A_1, \dots, A_d are a set of events, then
 - $-P(\cup_{i=1}^d A_i) \le \sum_{i=1}^d P(A_i)$

- Consider loss of training examples of an arbitrary model $h_{ heta}$ as independent random variables
- $R^{emp}(\theta) \rightarrow \bar{X}$
- $R(\theta) \rightarrow E[\bar{X}]$

So that the bound works for the trained model

• Bound the difference $R(\theta) - R^{emp}(\theta)$ for any possible $h_{\theta} \in \mathcal{H}$, or

$$P\left(\max_{h_{\theta}\in\mathcal{H}}\{R(\theta)-R^{emp}(\theta)\}\geq\epsilon\right)\leq?$$

$$P\left(\max_{h_{\theta}\in\mathcal{H}}\{R(\theta)-R^{emp}(\theta)\}\geq\epsilon\right)$$
 Definition
$$=P\left(\bigcup_{h_{\theta}\in\mathcal{H}}(R(\theta)-R^{emp}(\theta)\geq\epsilon)\right)$$
 Union bound
$$\leq\sum_{h_{\theta}\in\mathcal{H}}P(R(\theta)-R^{emp}(\theta)\geq\epsilon)$$
 Hoeffding's inequality
$$\leq\sum_{h_{\theta}\in\mathcal{H}}e^{-2m\epsilon^2}=He^{-2m\epsilon^2}$$

$$P(R(\theta^*) - R^{emp}(\theta^*) \le \epsilon) \ge 1 - He^{-2m\epsilon^2}$$

With probability of at least $(1 - \delta)$, we have

$$R(\theta^*) - R^{emp}(\theta^*) \le \sqrt{\frac{\log H - \log \delta}{2m}}$$

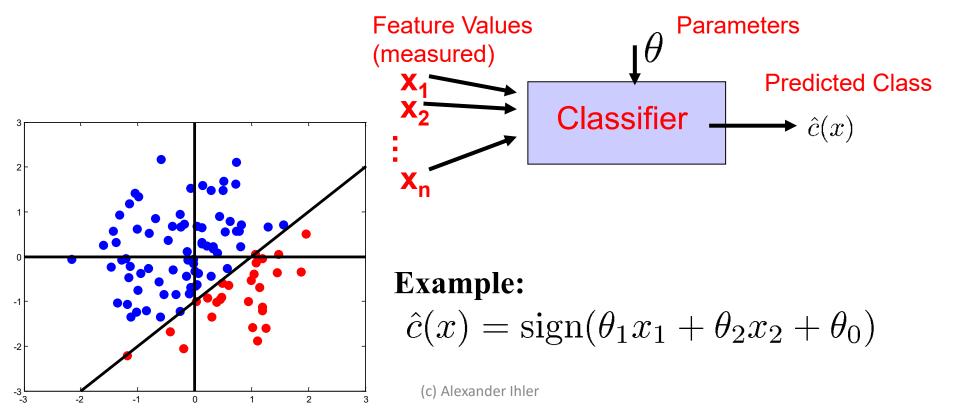
$$R(\theta^*) \le R^{emp}(\theta^*) + \sqrt{\frac{\log H - \log \delta}{2m}}$$

- If the hypothesis space \mathcal{H} is infinite (e.g., we have real-valued parameters), we cannot use the size of \mathcal{H} .
- Instead, we can use a quantity called the Vapnik-Chervonenkis or VC dimension (denoted by H) of the hypothesis class.

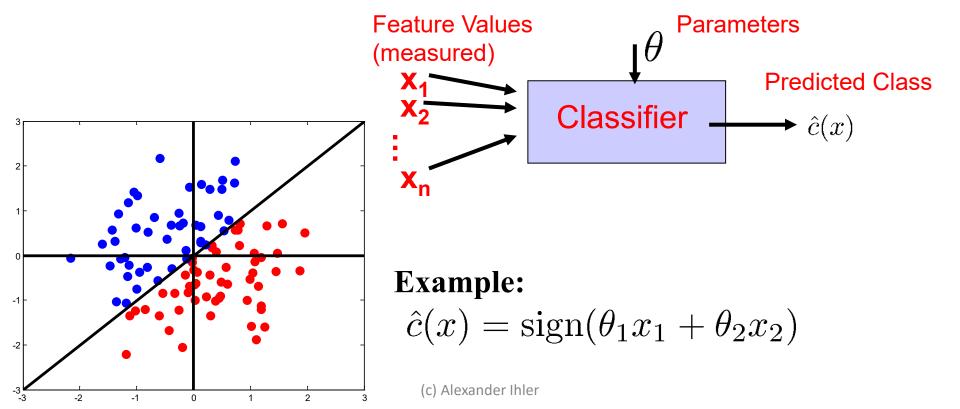
$$R(\theta^*) \le R^{emp}(\theta^*) + \sqrt{\frac{H\log\frac{2m}{H} + H - \log\frac{\delta}{4}}{m}}$$

VC DIMENSION

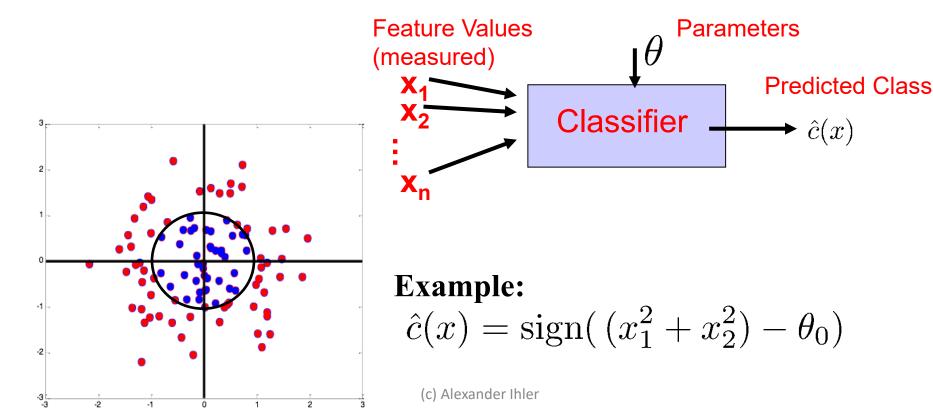
- We've seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - "Representational Power"
- Different learners have different power



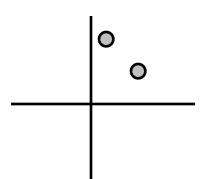
- We've seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - "Representational Power"
- Different learners have different power



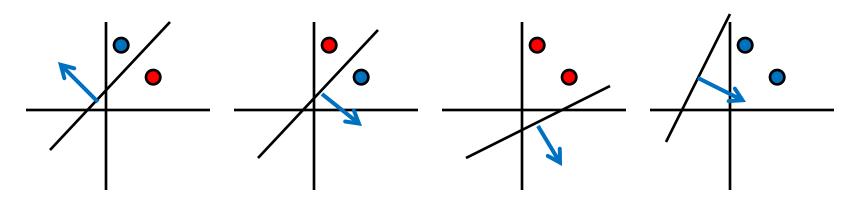
- We've seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - "Representational Power"
- Different learners have different power



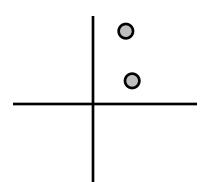
- We say a learner f(x) can shatter points x⁽¹⁾...x^(h) iff for all y⁽¹⁾...y^(h), f(x) can achieve zero error on training data (x⁽¹⁾,y⁽¹⁾), (x⁽²⁾,y⁽²⁾), ... (x^(h),y^(h))
 (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = sign(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ shatter these points?



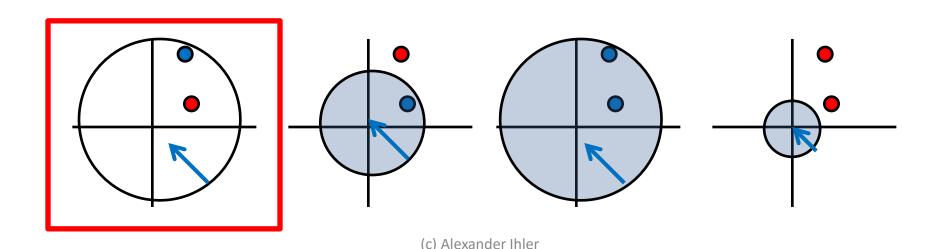
- We say a learner f(x) can shatter points x⁽¹⁾...x^(h) iff for all y⁽¹⁾...y^(h), f(x) can achieve zero error on training data (x⁽¹⁾,y⁽¹⁾), (x⁽²⁾,y⁽²⁾), ... (x^(h),y^(h))
 (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = sign(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ shatter these points?
- Yes: there are 4 possible training sets...



- We say a learner f(x) can shatter points x⁽¹⁾...x^(h) iff for all y⁽¹⁾...y^(h), f(x) can achieve zero error on training data (x⁽¹⁾,y⁽¹⁾), (x⁽²⁾,y⁽²⁾), ... (x^(h),y^(h))
 (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = sign(x_1^2 + x_2^2 \theta)$ shatter these points?



- We say a learner f(x) can shatter points x⁽¹⁾...x^(h) iff for all y⁽¹⁾...y^(h), f(x) can achieve zero error on training data (x⁽¹⁾,y⁽¹⁾), (x⁽²⁾,y⁽²⁾), ... (x^(h),y^(h))
 (i.e., there exists some θ that gets zero error)
- Can $f(x; \theta) = sign(\theta (x_1^2 + x_2^2))$ shatter these points?
- Nope!



The VC dimension H is defined as
 The maximum number of points h that can be arranged so that f(x) can shatter them

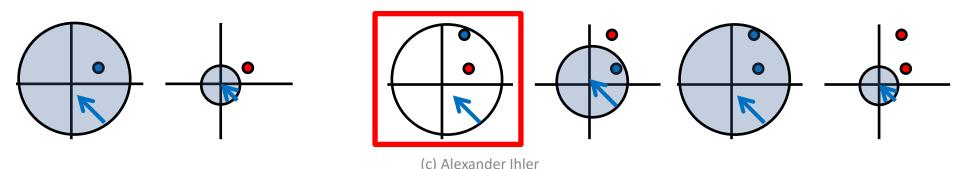
A game:

- Fix the definition of $f(x;\theta)$
- Player 1: choose locations x⁽¹⁾...x^(h)
- Player 2: choose target labels y⁽¹⁾...y^(h)
- Player 1: choose value of θ
- If $f(x;\theta)$ can reproduce the target labels, P1 wins

$$\exists \{x^{(1)} \dots x^{(h)}\} \ s.t. \ \forall \{y^{(1)} \dots y^{(h)}\} \ \exists \theta \ s.t. \ \forall i \ f(x^{(i)}; \theta) = y^{(i)}$$

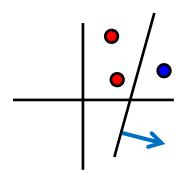
- The VC dimension H is defined as
 The maximum number of points h that can be arranged so that f(x) can shatter them
- Example: what's the VC dimension of the (zero-centered) circle, $f(x; \theta) = sign(x_1^2 + x_2^2 \theta)$?

- The VC dimension H is defined as
 The maximum number of points h that can be arranged so that f(x) can shatter them
- Example: what's the VC dimension of the (zero-centered) circle, $f(x; \theta) = sign(\theta (x_1^2 + x_2^2))$?
- VCdim = 1 : can arrange one point, cannot arrange two (previous example was general)

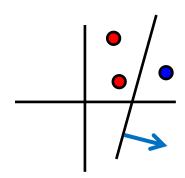


• Example: what's the VC dimension of the two-dimensional line, $f(x;\theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?

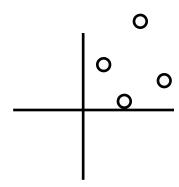
- Example: what's the VC dimension of the two-dimensional line, $f(x; \theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?
- VC dim >= 3?



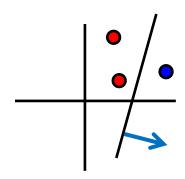
- Example: what's the VC dimension of the two-dimensional line, $f(x;\theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?
- VC dim >= 3? Yes



VC dim >= 4?

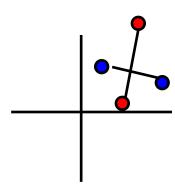


- Example: what's the VC dimension of the two-dimensional line, $f(x;\theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?
- VC dim >= 3? Yes



VC dim >= 4? No...

Any line through these points must split one pair (by crossing one of the lines)

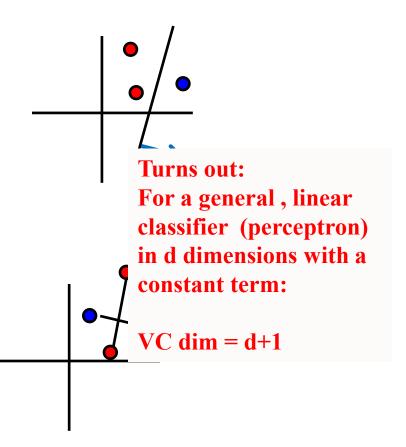


• Example: what's the VC dimension of the two-dimensional line, $f(x; \theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?

VC dim >= 3? Yes

VC dim >= 4? No...

Any line through these points
must split one pair (by crossing
one of the lines)



- VC dimension measures the "power" of the learner
- Does *not* necessarily equal the # of parameters!
- Number of parameters does not necessarily equal complexity
 - Can define a classifier with a lot of parameters but not much power (how?)
 - Can define a classifier with one parameter but lots of power (how?)
- Lots of work to determine what the VC dimension of various learners is...
 - The VC dimension of neural networks with sigmoid activation functions is at most $O(|E|^2 \cdot |V|^2)$, and O(|E|) if weights are limited to numbers that can represented by computer.

Using VC dimension

- Used validation / cross-validation to select complexity
- Use VC dimension based bound on test error similarly
- "Structural Risk Minimization" (SRM)

$$\text{TestError} \leq \text{TrainError} + \sqrt{\frac{H \log(2m/H) + H - \log(\eta/4)}{m}}$$

