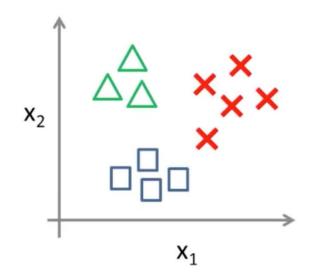
Unsupervised Learning

Classification

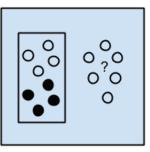
Binary classification:

x_2 x_2 x_1

Multi-class classification:



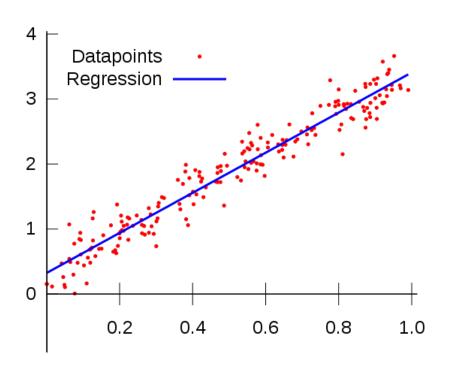
Supervised Learning



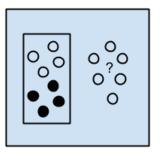
Supervised Learning Algorithms

https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

Regression



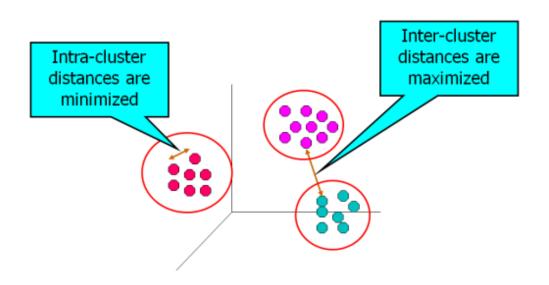
Supervised Learning



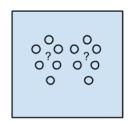
Supervised Learning Algorithms

 $\frac{https://quantdare.com/machine-learning-a-brief-breakdown/}{https://medium.com/simple-ai/linear-regression-intro-to-machine-learning-6-6e320dbdaf06}$

Clustering

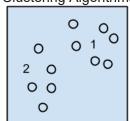


Unsupervised Learning



Unsupervised Learning Algorithms

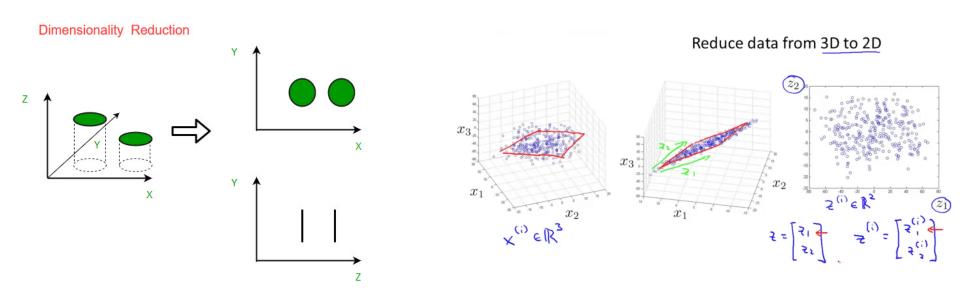
Clustering Algorithms



Clustering Algorithms

https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ https://apandre.wordpress.com/visible-data/cluster-analysis/

Dimensionality Reduction

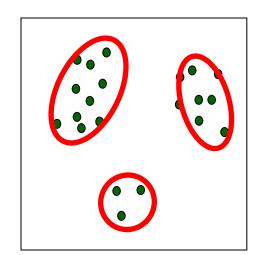


Clustering

Adopted from slides by Alexander Ihler

Unsupervised learning

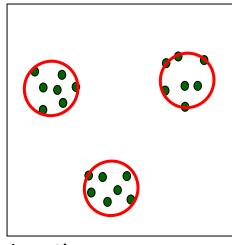
- Supervised learning
 - Predict target value ("y") given features ("x")
- Unsupervised learning
 - Understand patterns of data (just "x")
 - Useful for many reasons
 - Data mining ("explain")
 - Missing features ("impute")
 - Representation (feature generation or selection)
- One example: clustering
 - Describe data by discrete "groups" with some characteristics



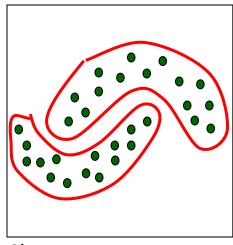
Clustering

- Clustering describes data by "groups"
- The meaning of "groups" may vary by data!

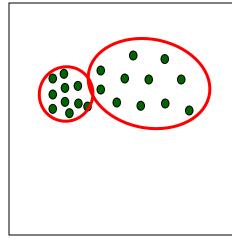
Examples



Location



Shape



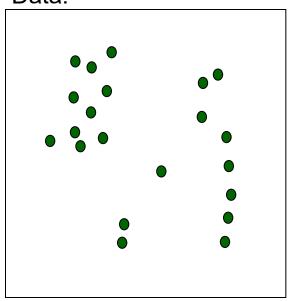
Density

Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering

Initially, every datum is a cluster

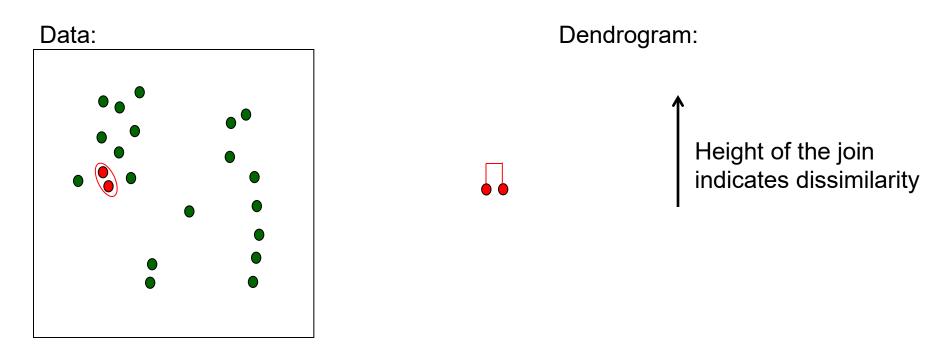
Data:



- A simple clustering algorithm
- Define a distance (or dissimilarity) between clusters (we'll return to this)
- Initialize: every example is a cluster
- Iterate:
 - Compute distances between all clusters (store for efficiency)
 - Merge two closest clusters
- Save both clustering and sequence of cluster operations
- "Dendrogram"

Iteration 1

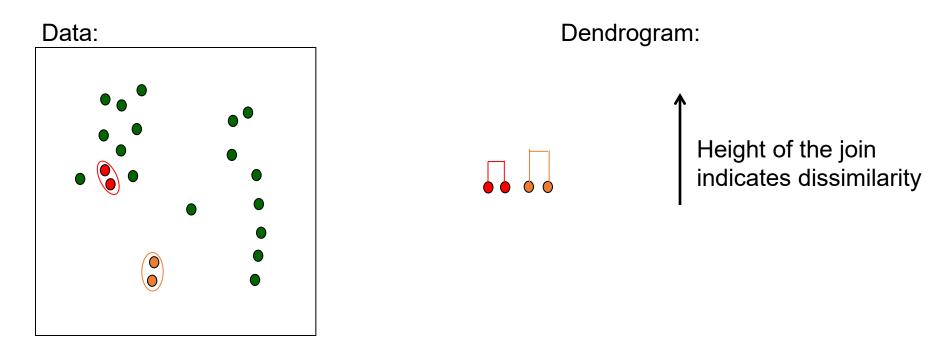
Builds up a sequence of clusters ("hierarchical")



Algorithmic Complexity: $O(m^2 \log m) + O(m \log m) +$

Iteration 2

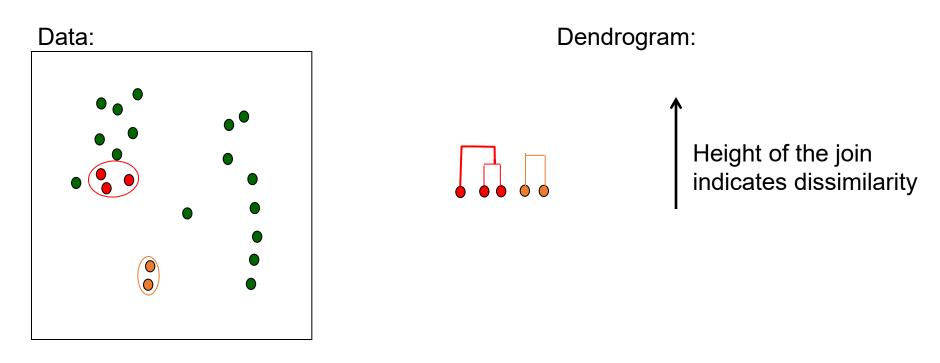
Builds up a sequence of clusters ("hierarchical")



Algorithmic Complexity: $O(m^2 \log m) + 2*O(m \log m) +$

Iteration 3

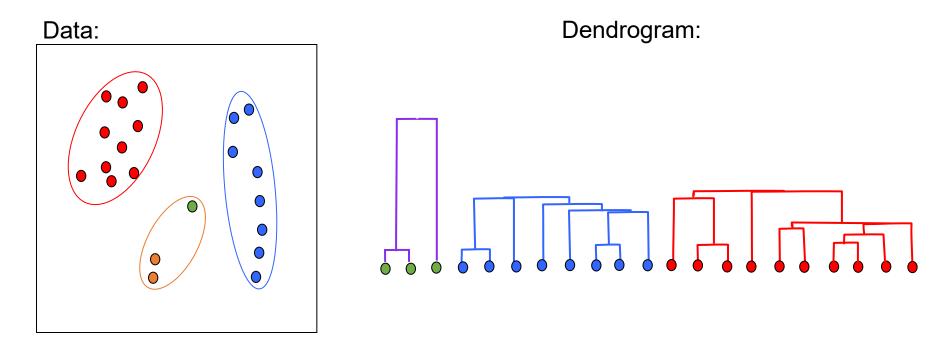
Builds up a sequence of clusters ("hierarchical")



Algorithmic Complexity: $O(m^2 \log m) + 3*O(m \log m) +$

Iteration m-3

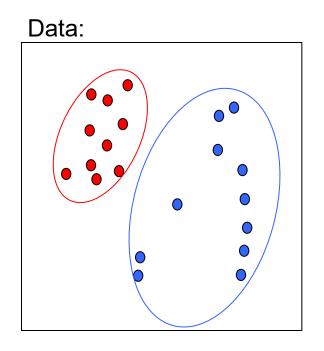
Builds up a sequence of clusters ("hierarchical")



Algorithmic Complexity: $O(m^2 \log m) + (m-3)*O(m \log m) +$

Iteration m-2

Builds up a sequence of clusters ("hierarchical")

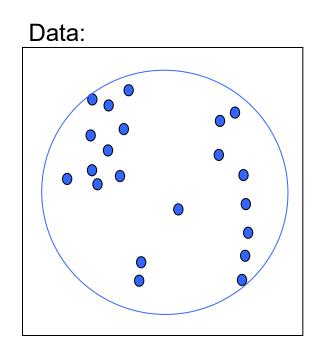


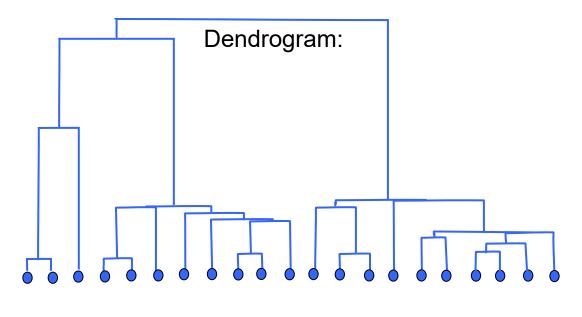


Algorithmic Complexity: $O(m^2 \log m) + (m-2)*O(m \log m) +$

Iteration m-1

Builds up a sequence of clusters ("hierarchical")

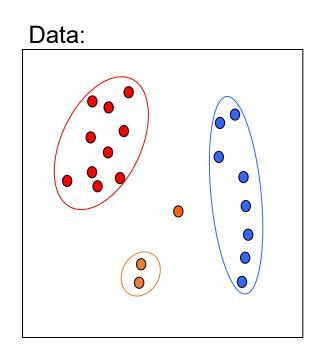


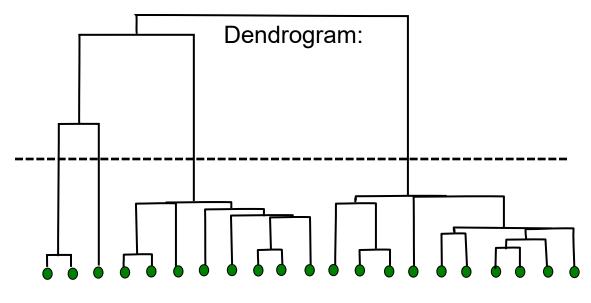


Algorithmic Complexity: $O(m^2 \log m) + (m-1)*O(m \log m) = O(m^2 \log m)$

From dendrogram to clusters

Given the sequence, can select a number of clusters or a dissimilarity threshold:

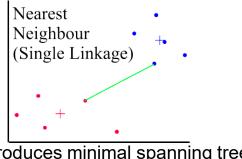




Algorithmic Complexity: $O(m^2 \log m) + (m-1)*O(m \log m) = O(m^2 \log m)$

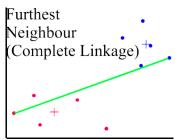
Cluster distances

$$D_{\min}(C_i, C_j) = \min_{x \in C_i, y \in C_j} ||x - y||^2$$



$$D_{\max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} ||x - y||^2$$

$$D_{\text{avg}}(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i, y \in C_j} ||x - y||^2$$



avoids elongated clusters.

$$D_{\text{means}}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$

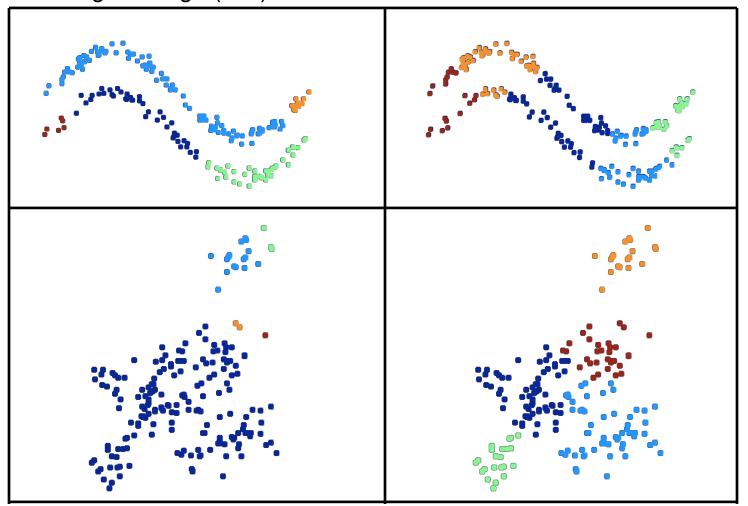
Centroid

Need:

$$D(A,C)$$
 $D(B,C)$
 $D(A+B,C)$

Cluster distances

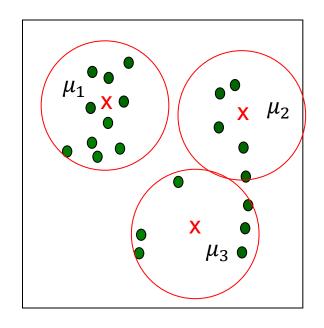
• Dissimilarity choice will affect clusters created
Single linkage (min)
Complete linkage (max)



Summary

- Agglomerative clustering
 - Choose a cluster distance / dissimilarity scoring method
 - Successively merge closest pair of clusters
 - "Dendrogram" shows sequence of merges & distances
 - Complexity: O(m² log m)
- "Clustergram" for understanding data matrix
 - Build clusters on rows (data) and columns (features)
 - Reorder data & features to expose behavior across groups
- Agglomerative clusters depend critically on dissimilarity
 - Choice determines characteristics of "found" clusters

- A simple clustering algorithm
- Iterate between
 - Updating the assignment of data to clusters
 - Updating the cluster's summarization



Notation:

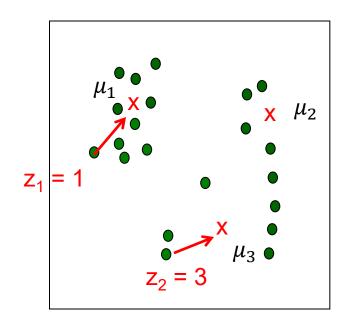
Data example i has features x_i

Assume K clusters

Each cluster c "described" by a center μ_c

Each cluster will "claim" a set of nearby points

- A simple clustering algorithm
- Iterate between
 - Updating the assignment of data to clusters
 - Updating the cluster's summarization



Notation:

Data example i has features x_i

Assume K clusters

Each cluster c "described" by a center μ_c

Each cluster will "claim" a set of nearby points "Assignment" of ith example: $z_i \in 1..K$

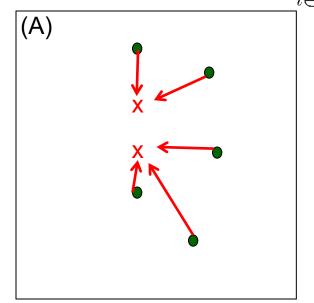
- Iterate until convergence:
 - (A) For each datum, find the closest cluster

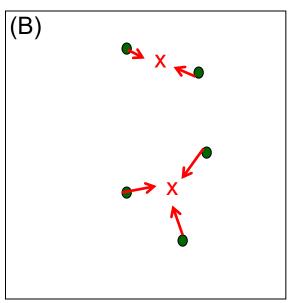
$$z_i = \arg\min \|x_i - \mu_c\|^2 \qquad \forall i$$

• (B) Set each cluster to the mean of all assigned data:

Set each cluster to the mean of all assigned data.
$$\forall c, \qquad \mu_c = \arg\min_{\mu_c} \sum_{i:z_i=c} \left| |x_i - \mu_c| \right|^2$$

$$\forall c, \qquad \mu_c = \frac{1}{m_c} \sum_{i \in S_c} x_i \qquad S_c = \{i: z_i = c\}, \ m_c = |S_c|$$





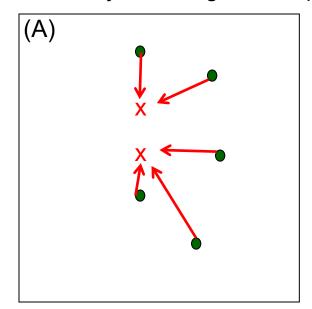
Optimizing the cost function:

$$C(\underline{z},\underline{\mu}) = \sum_{i} \|x_i - \mu_{z_i}\|^2$$

Alternating optimization:

Over the cluster assignments:

Only one term in sum depends on z_i Minimized by selecting closest μ_c



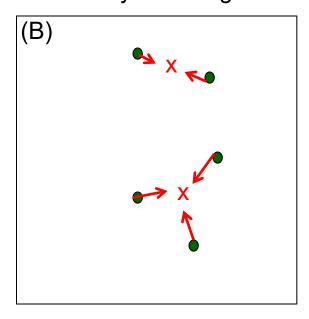
Descent => guaranteed to converge

New means = same assignments Same assignments = same means Same means = same assignments

..

Over the cluster centers:

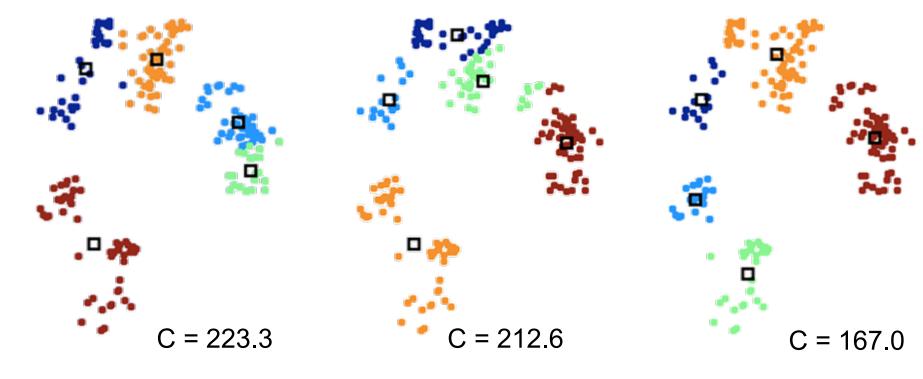
Cluster c only depends on x_i with z_i =c Minimized by selecting the mean



- 1) Initialize clusters centroids. For each point, place it in the cluster whose current centroid it is nearest
- 2) After all points are assigned, update the locations of centroids of the *k* clusters
- 3) Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- Repeat 2 and 3 until convergence
 - Convergence: Points don't move between clusters and centroids stabilize

Initialization

- Multiple local optima, depending on initialization
- Try different (randomized) initializations
- Can use cost C to decide which we prefer



Initialization methods

Random

- Usually, choose random data index
- Ensures centers are near some data
- Issue: may choose nearby points

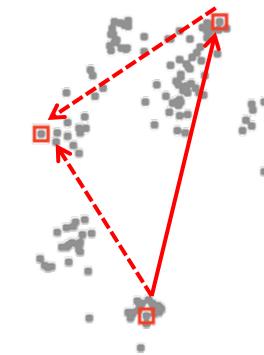
Initialization methods

Random

- Usually, choose random data index
- Ensures centers are near some data
- Issue: may choose nearby points

Distance-based

- Start with one random data point
- Find the point farthest from the clusters chosen so far
- Issue: may choose outliers

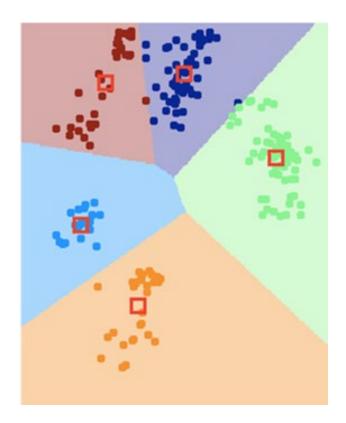


Initialization methods

- Random
 - Usually, choose random data index
 - Ensures centers are near some data
 - Issue: may choose nearby points
- Distance-based
 - Start with one random data point
 - Find the point farthest from the clusters chosen so far
 - Issue: may choose outliers
- Random + distance ("k-means++") (Arthur & Vassilvitskii, 2007)
 - Choose next points "far but randomly"
 p(x) / squared distance from x to current centers
 - Likely to put a cluster far away, in a region with lots of data

Out-of-sample points

- Often want to use clustering on new data
- Easy for k-means: choose nearest cluster center



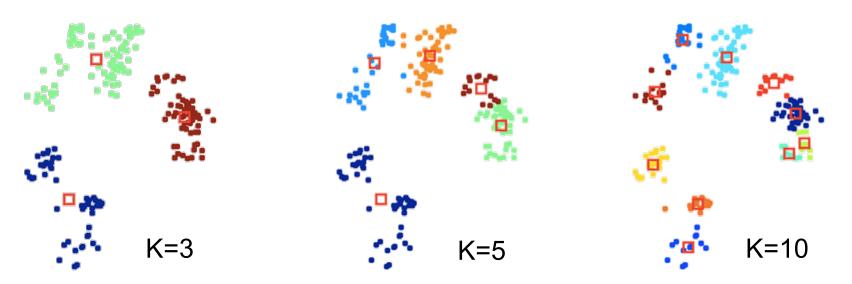
Choosing the number of clusters

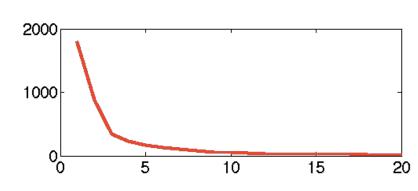
With cost function

$$C(\underline{z},\underline{\mu}) = \sum_{i} \|x_i - \mu_{z_i}\|^2$$

what is the optimal value of k?

- Cost always decreases with k!
- A model complexity issue...





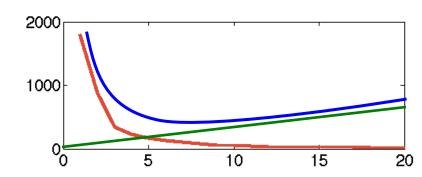
Choosing the number of clusters

With cost function

$$C(\underline{z},\underline{\mu}) = \sum_{i} \|x_i - \mu_{z_i}\|^2$$

what is the optimal value of k?

- Cost always decreases with k!
- A model complexity issue...



- One solution is to penalize for complexity
 - Add penalty: Total = Error + Complexity
 - Now more clusters can increase cost, if they don't help "enough"
 - Ex: simplified Bayesian Information Criterion (BIC) penalty

$$J(\underline{z}, \underline{\mu}) = \log \left[\frac{1}{m d} \sum_{i} ||x_i - \mu_{z_i}||^2 \right] + k \frac{\log m}{m}$$

Summary

- K-Means clustering
 - Clusters described as locations ("centers") in feature space
- Procedure
 - Initialize cluster centers
 - Iterate: assign each data point to its closest cluster center
 - : move cluster centers to minimize mean squared error
- Properties
 - Coordinate descent on MSE criterion
 - Prone to local optima; initialization important
- Out-of-sample data
- Choosing the # of clusters, K
 - Model selection problem; penalize for complexity (BIC, etc.)