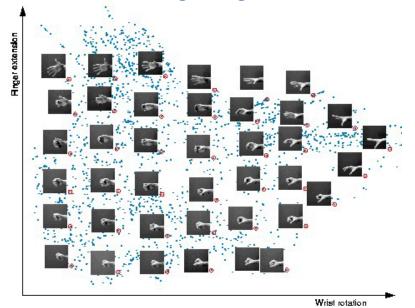
Dimensionality Reduction: Principal Component Analysis (PCA) & Singular Value Decomposition (SVD)

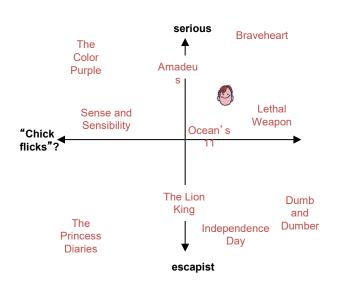
Motivation

- High-dimensional data
 - Images of faces
 - Text from articles
 - All S&P 500 stocks
- Can we describe them in a "simpler" way?
 - Embedding: place data in R^d, such that "similar" data are close

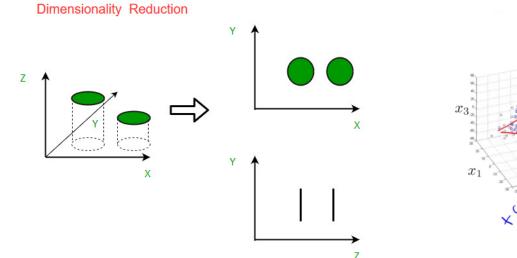
Ex: embedding images in 2D

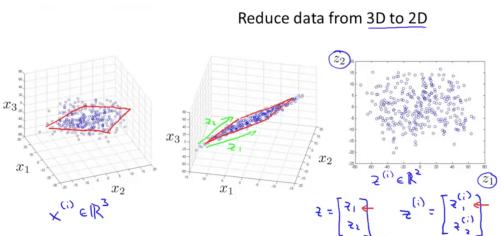


Ex: embedding movies in 2D



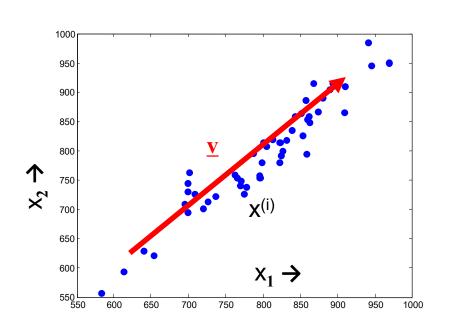
Dimensionality Reduction

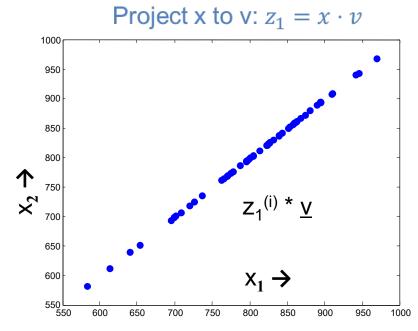




Dimensionality reduction

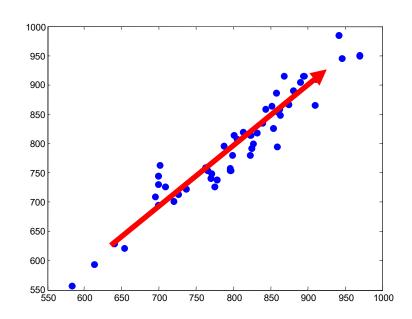
- Ex: data with two real values [x₁,x₂]
- We'd like to describe each point using only one value [z₁]
- We'll communicate a "model" to convert: $[x_1,x_2] \sim f(z_1)$
- Ex: linear function f(z): $[x_1, x_2] = z_1 * \underline{v} = z_1 * [v_1, v_2]$
- v is the same for all data points (communicate once)
- z tells us the closest point on v to the original point [x₁,x₂]





Principal Components Analysis

- How should we find v?
 - Assume X is zero mean, or $\tilde{X} = X \mu$
 - Find "v" as the direction of maximum "spread" (variance)
 - Solution is the eigenvector with largest eigenvalue
 - Equivalent: v also leaves the smallest residual variance! ("error")



Project X to v: $z = \tilde{X} \cdot v$

Variance of projected points:

$$\sum_{i} (z^{(i)})^2 = z^T z = v^T \tilde{X}^T \tilde{X} v$$

Best "direction" v:

$$\max_{v} v^{T} \tilde{X}^{T} \tilde{X} v \quad s.t. ||v|| = 1$$

- largest eigenvector of X^TX

Eigenvector Decomposition

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

Oval shows constant Δ² value...

$$\Sigma = U\Lambda U^T$$

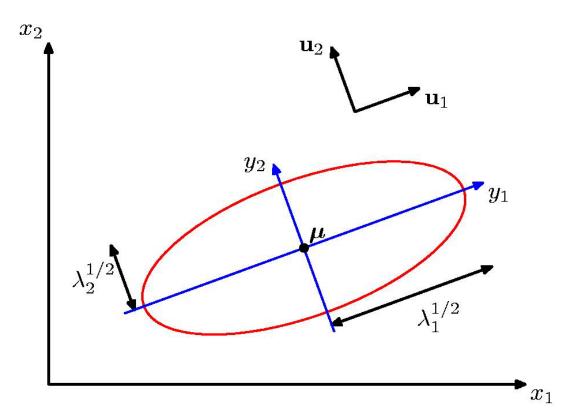
Write Σ in terms of eigenvectors...

$$\mathbf{\Sigma}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$

Then...

$$\Delta^2 = \sum_{i=1}^D \frac{y_i^2}{\lambda_i}$$

$$y_i = \mathbf{u}_i^{\mathrm{T}}(\mathbf{x} - \boldsymbol{\mu})$$

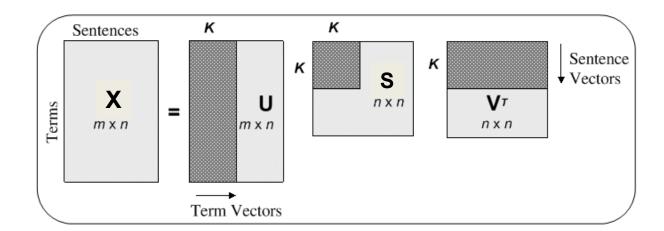


PCA representation

- Subtract data mean from each point
- (Typically) scale each dimension by its variance
 - Helps pay less attention to magnitude of the variable
- Compute covariance matrix, $\Sigma = 1/m \sum (x^{i-1})^i (x^{i-1})$
- Compute the k largest eigenvectors of Σ
 Σ = V D V^T
- Compute the projections onto k eigenvectors for all data examples.

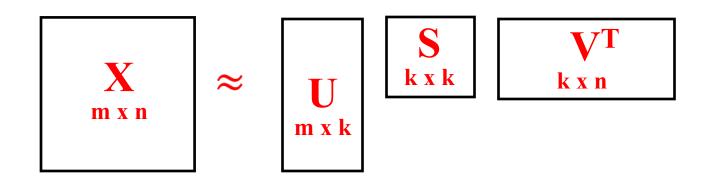
Singular Value Decomposition

- Alternative method to calculate (still subtract mean 1st)
- Decompose $X = U S V^T$
 - Orthogonal: $X^T X = V S S V^T = V D V^T$
- U*S matrix provides coefficients
 - Example $x^{(i)} = U_{i,1} S_{11} v_1 + U_{i,2} S_{22} v_2 + ...$
- Gives the least-squares approximation to X of this form



Singular Value Decomposition

- Alternative method to calculate (still subtract mean 1st)
- Decompose $X = U S V^T$
 - Orthogonal: $X^T X = V S S V^T = V D V^T$
- U*S matrix provides coefficients
 - Example $x^{(i)} = U_{i,1} S_{11} v_1 + U_{i,2} S_{22} v_2 + ...$
- Gives the least-squares approximation to X of this form

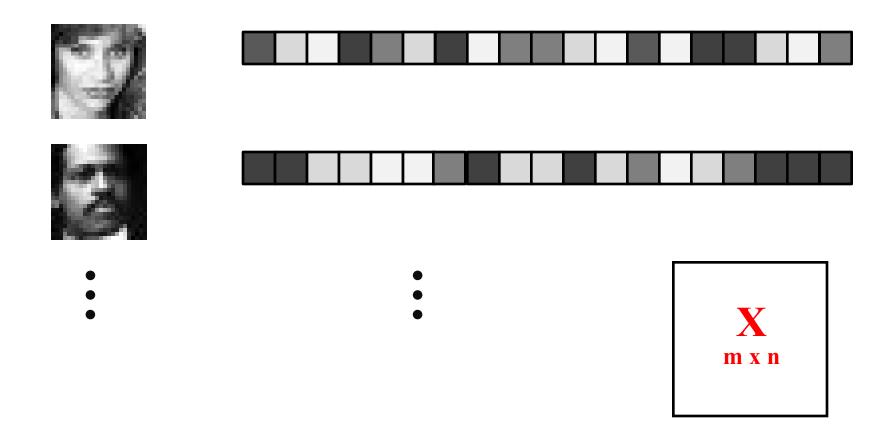


SVD for PCA

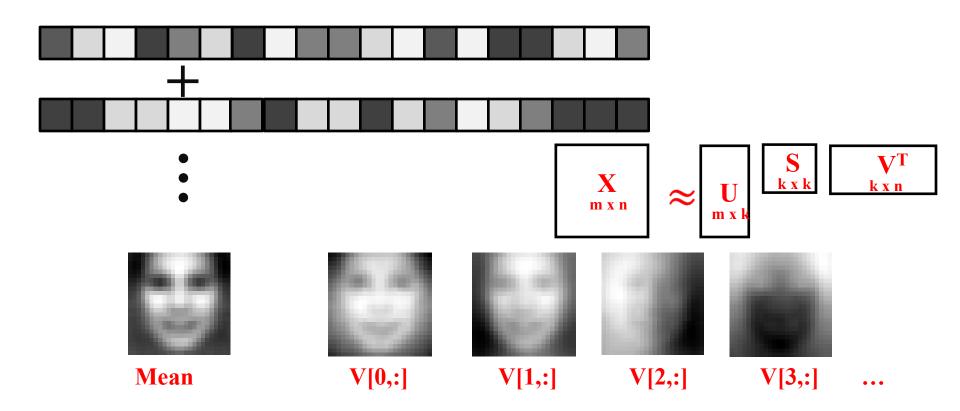
- Subtract data mean from each point
- (Typically) scale each dimension by its variance
 - Helps pay less attention to magnitude of the variable
- Compute the SVD of the data matrix
 X = U S V^T
- Extract first k columns in US

APPLICATIONS OF PCA/SVD

- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
 - 24x24 images of faces = 576 dimensional measurements



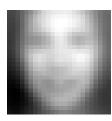
- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
 - 24x24 images of faces = 576 dimensional measurements
 - Take first K PCA components



- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
 - 24x24 images of faces = 576 dimensional measurements
 - Take first K PCA components

Mean

Dir 1



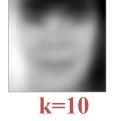
Dir 2

Dir 3

Dir 4

Projecting data onto first k dimensions

Xi



k=50

- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
 - 24x24 images of faces = 576 dimensional measurements
 - Take first K PCA components

Projecting data onto first k dimensions

Summary

- Dimensionality reduction
 - Representation: basis vectors & coefficients
- Linear decomposition
 - PCA / eigendecomposition
 - Singular value decomposition
- Examples and data sets
 - Face images
 - Text representation