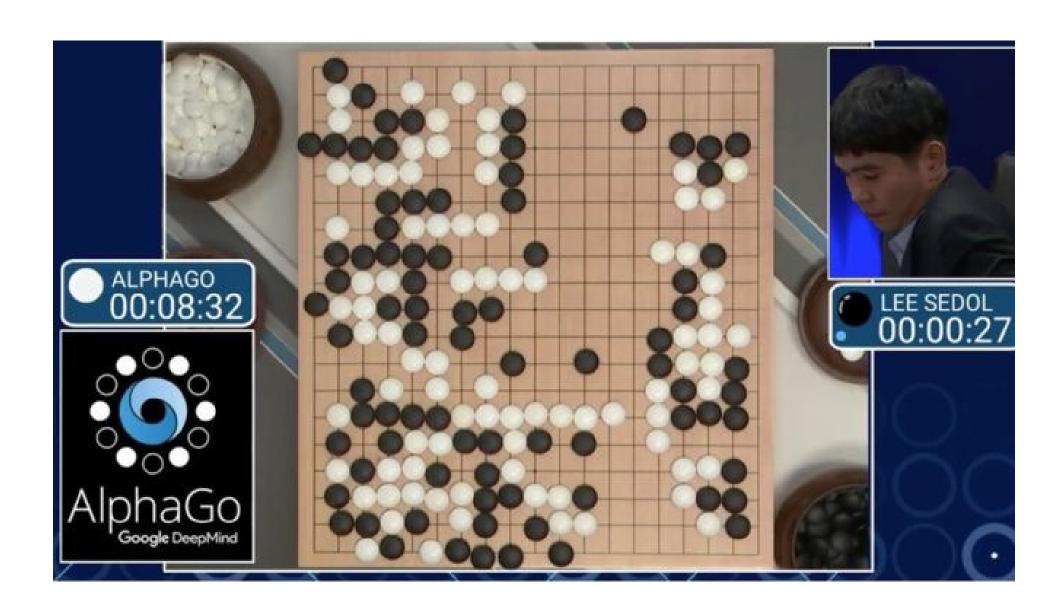
Reinforcement Learning

Adapted from slides by Shusen Wang at Stevens Institute of Technology

http://wangshusen.github.io/

AlphaGo



A little bit probability theory...

Random Variable

- Random variable: unknown; its values depends on outcomes of a random event.
- Uppercase letter X for random variable.

Random Variable

- Random variable: unknown; its values depends on outcomes of a random event.
- Uppercase letter X for random variable.
- Lowercase letter x for an observed value.
- For example, I flipped a coin 4 times and observed:
 - $x_1 = 1$,
 - $x_2 = 1$,
 - $x_3 = 0$,
 - $x_4 = 1$.

Probability Density Function (PDF)

• PDF provides a relative likelihood that the value of the random variable would equal that sample.

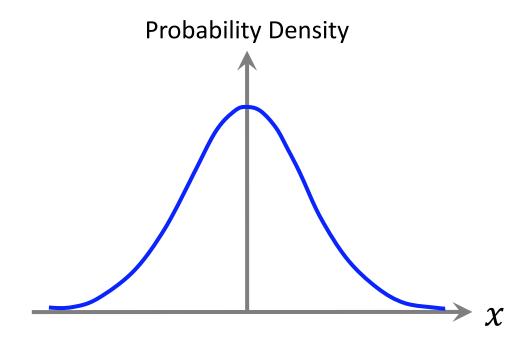
Probability Density Function (PDF)

 PDF provides a relative likelihood that the value of the random variable would equal that sample.

Example: Gaussian distribution

- It is a continuous distribution.
- PDF:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$



Probability Mass Function (PMF)

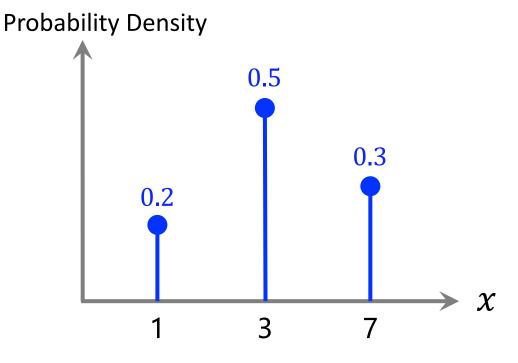
 PMF is a function that gives the probability that a discrete random variable is exactly equal to some value

Example

- Discrete random variable: $X \in \{1, 3, 7\}$.
- PDF:

$$p(1) = 0.2,$$

 $p(3) = 0.5,$
 $p(7) = 0.3.$



Properties of PDF/PMF

- Random variable X is in the domain X.
- For continuous distribution,

$$\int_{\mathcal{X}} p(x) \, dx = 1.$$

For discrete distribution,

$$\sum_{x \in \mathcal{X}} p(x) = 1.$$

Expectation

- Random variable X is in the domain \mathcal{X} .
- For continuous distribution, the expectation of f(X) is:

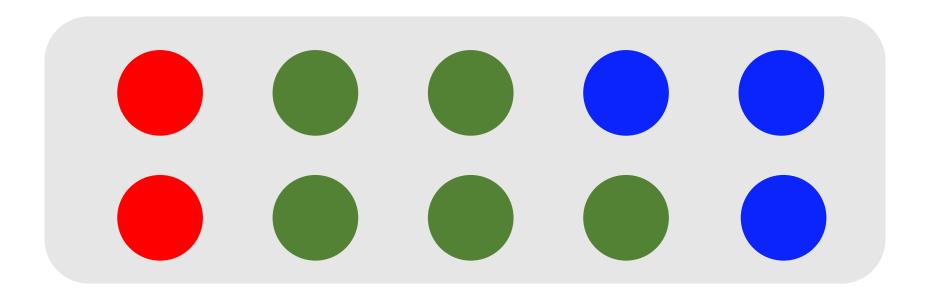
$$\mathbb{E}\left[f(X)\right] = \int_{\mathcal{X}} p(x) \cdot f(x) \, dx.$$

• For discrete distribution, the expectation of f(X) is:

$$\mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} p(x) \cdot f(x).$$

Random Sampling

- There are 10 balls in the bin: 2 are red, 5 are green, and 3 are blue.
- Randomly sample a ball.
- What will be the color?



Random Sampling

- Sample red ball w.p. 0.2, green ball w.p. 0.5, and blue ball w.p. 0.3.
- Randomly sample a ball.
- What will be the color?

Random Sampling

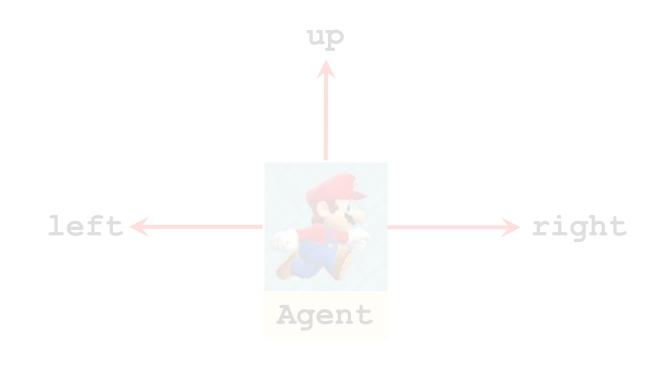
- Sample red ball w.p. 0.2, green ball w.p. 0.5, and blue ball w.p. 0.3.
- Randomly sample a ball.
- What will be the color?

Terminologies

Terminology: state and action

state s (this frame)

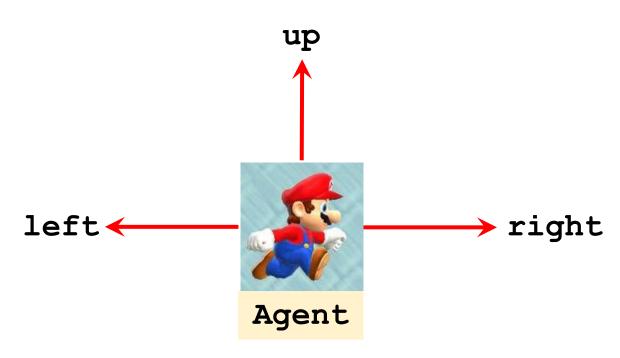
Action $\alpha \in \{\text{left, right, up}\}\$

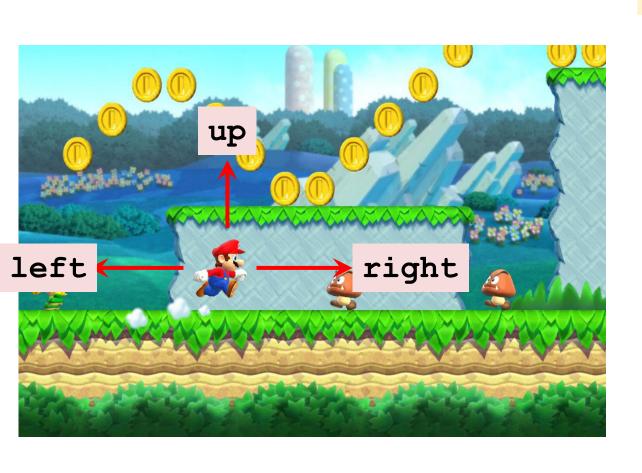


Terminology: state and action

state s (this frame)

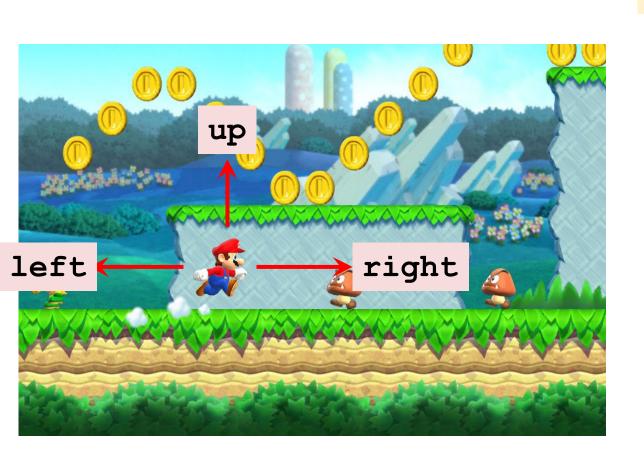
Action $a \in \{\text{left, right, up}\}\$





policy π

- Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.

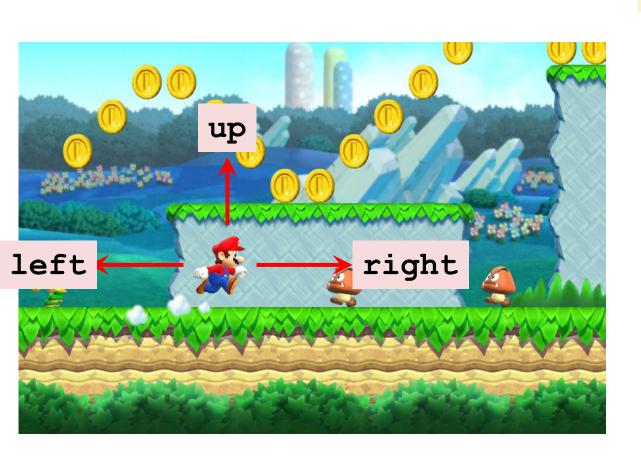


policy π

• Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$

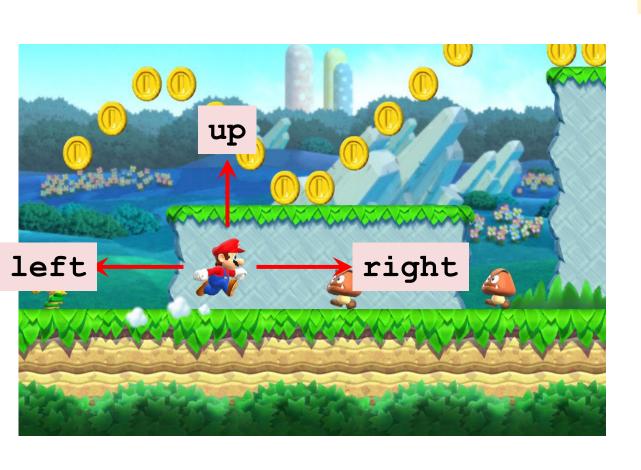
• It is the probability of taking action
$$A = a$$
 given state s , e.g.,

- $\pi(\text{left} \mid s) = 0.2$,
- $\pi(\text{right}|s) = 0.1$,
- $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.



policy π

- Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.



policy π

- Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.

reward R

• Collect a coin: R = +1

reward R

• Collect a coin: R = +1

• Win the game: R = +10000

reward R

• Collect a coin: R = +1

• Win the game: R = +10000

• Touch a Goomba: R = -10000 (game over).

reward R

• Collect a coin: R = +1

• Win the game: R = +10000

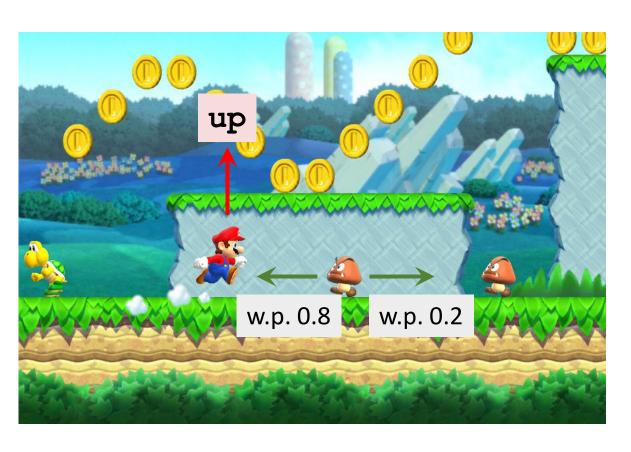
• Touch a Goomba: R = -10000 (game over).

• Nothing happens: R = 0

state transition

state transition

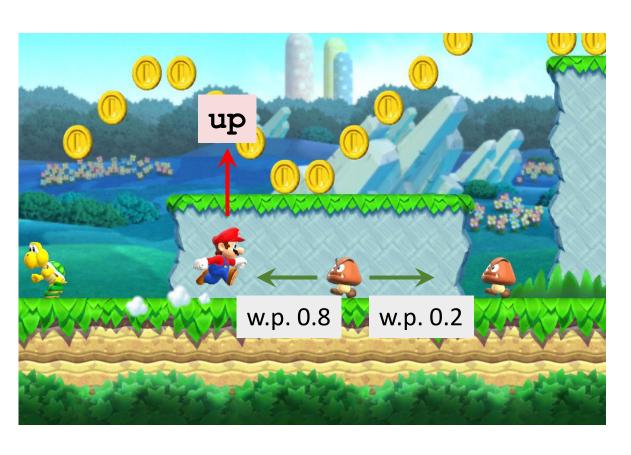
• E.g., "up" action leads to a new state.



state transition

• E.g., "up" action leads to a new state.

- State transition can be random.
- Randomness is from the environment.

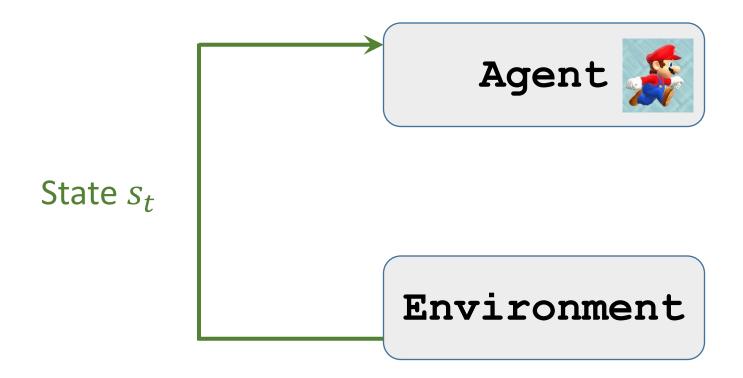


state transition

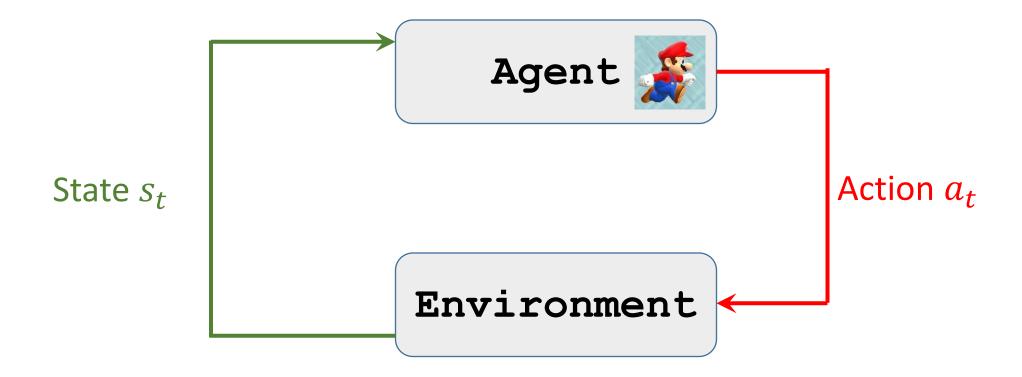
• E.g., "up" action leads to a new state.

- State transition can be random.
- Randomness is from the environment.
- $p(s'|s, a) = \mathbb{P}(S' = s'|S = s, A = a)$.

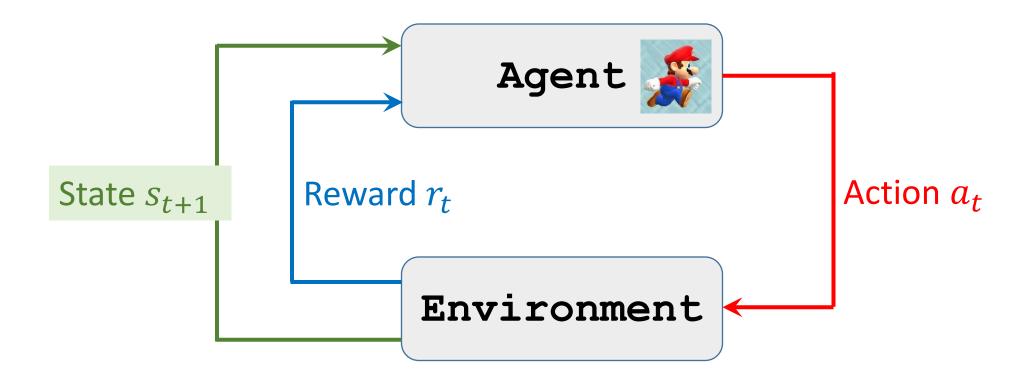
Terminology: agent environment interaction



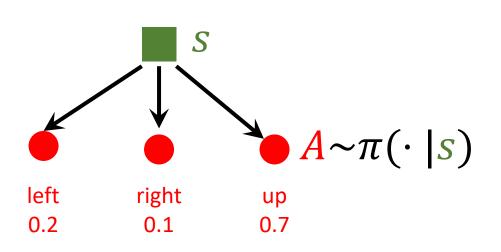
Terminology: agent environment interaction



Terminology: agent environment interaction



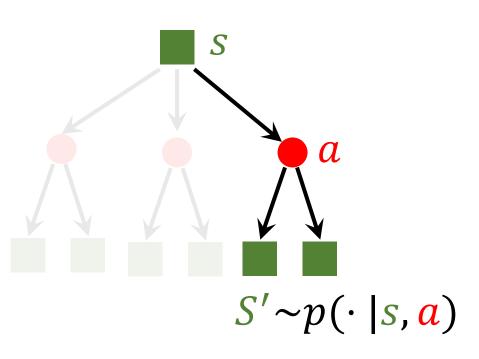
Randomness in Reinforcement Learning



Actions have randomness.

- Given state *s*, the action can be random, e.g., .
 - $\pi(\text{``left''}|s) = 0.2$,
 - $\pi(\text{"right"}|s) = 0.1$,
 - $\pi(\text{"up"}|s) = 0.7.$

Randomness in Reinforcement Learning



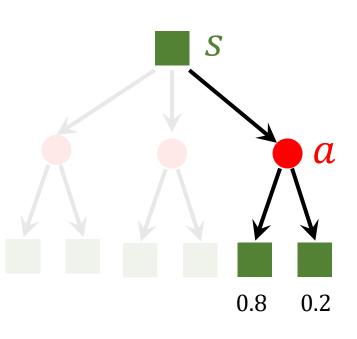
Actions have randomness.

- Given state *s*, the action can be random, e.g., .
 - $\pi(\text{``left''}|s) = 0.2$,
 - $\pi(\text{"right"}|s) = 0.1$,
 - $\pi(\text{"up"}|s) = 0.7.$

State transitions have randomness.

• Given state S = s and action A = a, the environment randomly generates a new state S'.

Randomness in Reinforcement Learning



Actions have randomness.

- Given state *s*, the action can be random, e.g., .
 - $\pi(\text{``left''}|s) = 0.2$,
 - $\pi(\text{"right"}|s) = 0.1$,
 - $\pi(\text{"up"}|s) = 0.7.$

State transitions have randomness.

• Given state S = s and action A = a, the environment randomly generates a new state S'.

Play the game using AI

- Observe a frame (state s_1)
- \rightarrow Make action a_1 (left, right, or up)
- \rightarrow Observe a new frame (state s_2) and reward r_1
- \rightarrow Make action a_2
- · **→** ...

Play the game using AI

- Observe a frame (state s_1)
- \rightarrow Make action a_1 (left, right, or up)
- \rightarrow Observe a new frame (state s_2) and reward r_1
- \rightarrow Make action a_2
- → ...

• (state, action, reward) trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_T, a_T, r_T$$

Rewards and Returns

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Question: Are R_t and R_{t+1} equally important?

- Which of the followings do you prefer?
 - I give you \$100 right now.
 - I will give you \$100 one year later.

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Question: Are R_t and R_{t+1} equally important?

- Which of the followings do you prefer?
 - I give you \$100 right now.
 - I will give you \$100 one year later.
- Future reward is less valuable than present reward.
- R_{t+1} should be given less weight than R_t .

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Definition: Discounted return (aka cumulative discounted future reward).

- γ : discount rate (tuning hyper-parameter).
- $U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$

Randomness in Returns

Definition: Discounted return (at time step t).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

At time step t, the return U_t is random.

- Two sources of randomness:
 - 1. Action can be random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$.
 - 2. New state can be random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$.

Randomness in Returns

Definition: Discounted return (at time step t).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

At time step t, the return U_t is random.

- Two sources of randomness:
 - 1. Action can be random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$.
 - 2. New state can be random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$.
- For any $i \geq t$, the reward R_i depends on S_i and A_i .
- Thus, given s_t , the return U_t depends on the random variables:
 - $A_t, A_{t+1}, A_{t+2}, \cdots$ and S_{t+1}, S_{t+2}, \cdots .

Value Functions

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

• Return U_t depends on states $S_t, S_{t+1}, S_{t+2}, \cdots$ and actions $A_t, A_{t+1}, A_{t+2}, \cdots$.

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

- Return U_t depends on states $S_t, S_{t+1}, S_{t+2}, \cdots$ and actions $A_t, A_{t+1}, A_{t+2}, \cdots$.
- Actions are random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$. (Policy function.)
- States are random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$. (State transition.)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A}_t = \mathbf{a}_t\right].$$

Definition: Optimal action-value function.

•
$$Q^*(s_t, \mathbf{a}_t) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a}_t).$$

State-Value Function V(s)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A})]$$

State-Value Function V(s)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{A}[Q_{\pi}(s_t, A)] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$
. (Actions are discrete.)

State-Value Function V(s)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}} \left[Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$
 (Actions are discrete.)

•
$$V_{\pi}(s_t) = \mathbb{E}_A \left[Q_{\pi}(s_t, A) \right] = \int \pi(a|s_t) \cdot Q_{\pi}(s_t, a) da$$
. (Actions are continuous.)

Understanding the Value Functions

- Action-value function: $Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right]$.
- Given policy π , $Q_{\pi}(s, a)$ evaluates how good it is for an agent to pick action a while being in state s.
- $Q^*(s_t, a_t)$ evaluates how good it is for an agent to pick action a while being in state s no matter what the policy is.

Understanding the Value Functions

- Action-value function: $Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right]$.
- Given policy π , $Q_{\pi}(s, a)$ evaluates how good it is for an agent to pick action a while being in state s.
- $Q^*(s_t, a_t)$ evaluates how good it is for an agent to pick action a while being in state s no matter what the policy is.
- State-value function: $V_{\pi}(s) = \mathbb{E}_{A} \left[Q_{\pi}(s, A) \right]$
- For fixed policy π , $V_{\pi}(s)$ evaluates how good the situation is in state s.
- $\mathbb{E}_{S}[V_{\pi}(S)]$ evaluates how good the policy π is.

Play games using reinforcement learning

How does AI control the agent?

Suppose we have a good policy $\pi(a|s)$.

- Upon observing the state s_t ,
- random sampling: $a_t \sim \pi(\cdot | s_t)$.

How does AI control the agent?

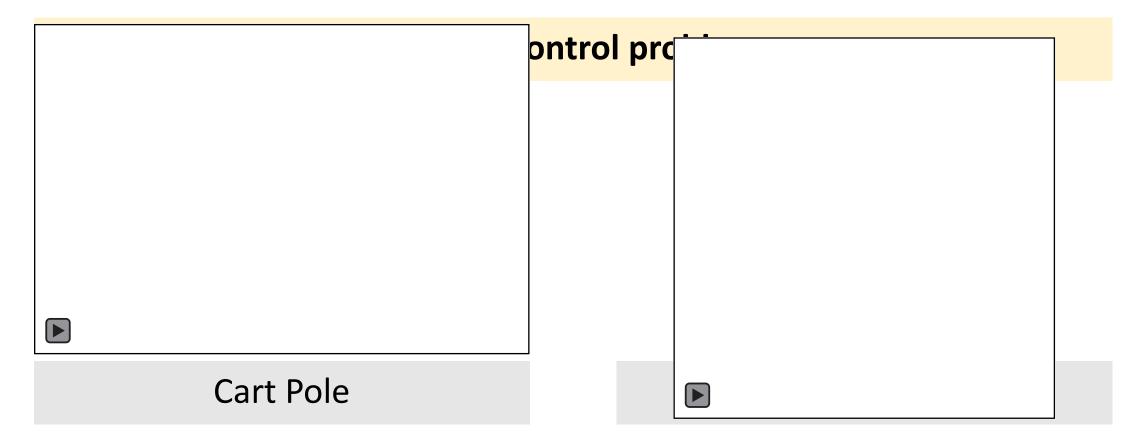
Suppose we have a good policy $\pi(a|s)$.

- Upon observing the state s_t ,
- random sampling: $a_t \sim \pi(\cdot | s_t)$.

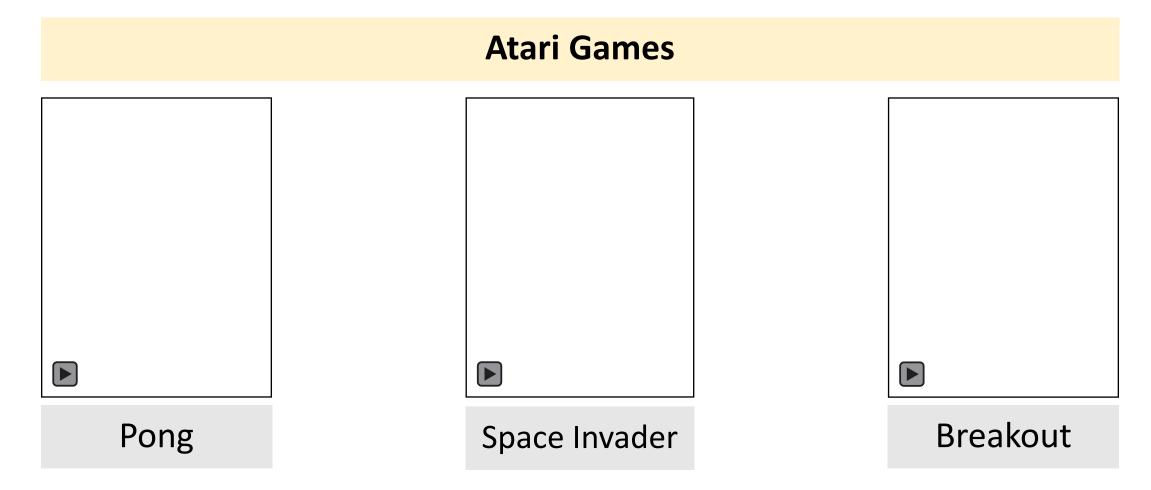
Suppose we know the optimal action-value function $Q^*(s, a)$.

- Upon observe the state s_t ,
- choose the action that maximizes the value: $a_t = \operatorname{argmax}_a Q^*(s_t, a)$.

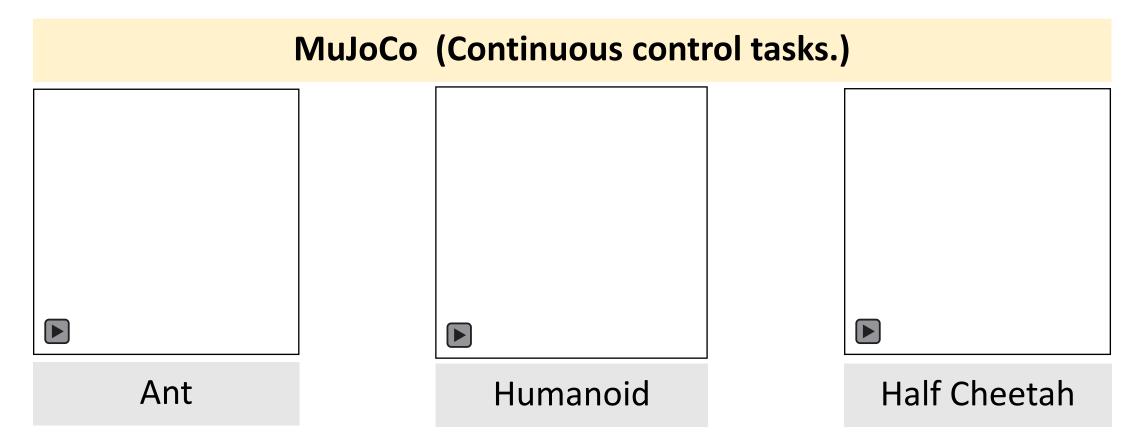
- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/

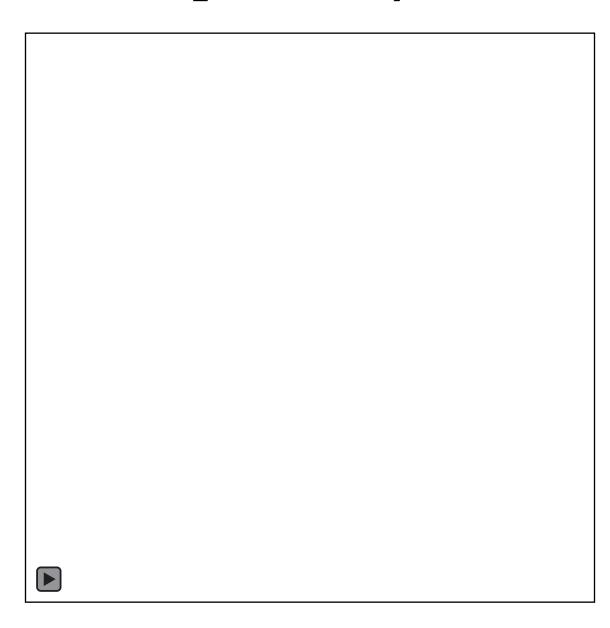


- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/



- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/





Play CartPole Game

```
import gym
env = gym.make('CartPole-v0')
```

- Get the environment of CartPole from Gym.
- "env" provides states and reward.

Play CartPole Game

```
state = env.reset()
for t in range (100) \rightarrow A window pops up rendering CartPole.
    env.render()
                                      A random action.
    print(state)
    action = env.action space.sample()
     state, reward, done, info = env.step(action)
    if done: "done=1" means finished (win or lose the game)
         print('Finished')
         break
env.close()
```

Summary

Summary

Terminologies

- Agent
- Environment
- State s.
- Action a.
- Reward *r*.
- Policy $\pi(a|s)$
- State transition p(s'|s, a).

Summary

Terminologies

Agent

- Environment
- State s.
- Action a.
- Reward *r*.
- Policy $\pi(a|s)$
- State transition p(s'|s,a).

Return and Value

• Return:

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

Action-value function:

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[U_t | s_t, \mathbf{a_t}\right].$$

Optimal action-value function:

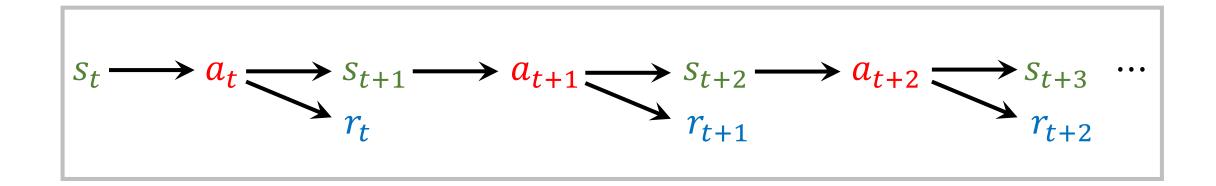
$$Q^*(s_t, \mathbf{a_t}) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a_t}).$$

State-value function:

$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A})].$$

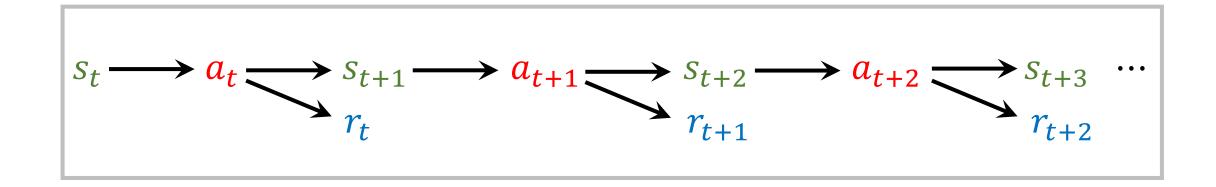
Play game using reinforcement learning

• Observe state s_t , make action a_t , environment gives s_{t+1} and reward r_t .



Play game using reinforcement learning

• Observe state s_t , make action a_t , environment gives s_{t+1} and reward r_t .



• The agent can be controlled by either $\pi(a|s)$ or $Q^*(s,a)$.

We are going to study...

- 2. Value-based learning.
 - Deep Q network (DQN) for approximating $Q^*(s, a)$.
 - Learn the network parameters using temporal different (TD).
- 3. Policy-based learning.
 - Policy network for approximating $\pi(a|s)$.
 - Learn the network parameters using policy gradient.
- 4. Actor-critic method. (Policy network + value network.)
- 5. Example: AlphaGo

Value-Based Reinforcement Learning

Shusen Wang

Action-Value Functions

Discounted Return

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

- The return depends on actions $A_t, A_{t+1}, A_{t+2}, \cdots$ and states $S_t, S_{t+1}, S_{t+2}, \cdots$
- Actions are random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$. (Policy function.)
- States are random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$. (State transition.)

Action-Value Functions Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

- Taken w.r.t. actions $A_{t+1}, A_{t+2}, A_{t+3}, \cdots$ and states $S_{t+1}, S_{t+2}, S_{t+3}, \cdots$
- Integrate out everything except for the observations: $A_t = a_t$ and $S_t = s_t$.

Action-Value Functions Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A}_t = \mathbf{a}_t\right].$$

Definition: Optimal action-value function.

- $Q^*(s_t, \mathbf{a}_t) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a}_t).$
- Whatever policy function π is used, the result of taking a_t at state s_t cannot be better than $Q^*(s_t, a_t)$.

Deep Q-Network (DQN)

Approximate the Q Function

Goal: Win the game (\approx maximize the total reward.)

Question: If we know $Q^*(s, a)$, what is the best action?

Approximate the Q Function

Goal: Win the game (\approx maximize the total reward.)

Question: If we know $Q^*(s, a)$, what is the best action?

• Obviously, the best action is $a^* = \underset{a}{\operatorname{argmax}} \, Q^*(s, a)$.

 Q^* is an indicator of how good it is for an agent to pick action a while being in state s.

Approximate the Q Function

Goal: Win the game (\approx maximize the total reward.)

Question: If we know $Q^*(s, a)$, what is the best action?

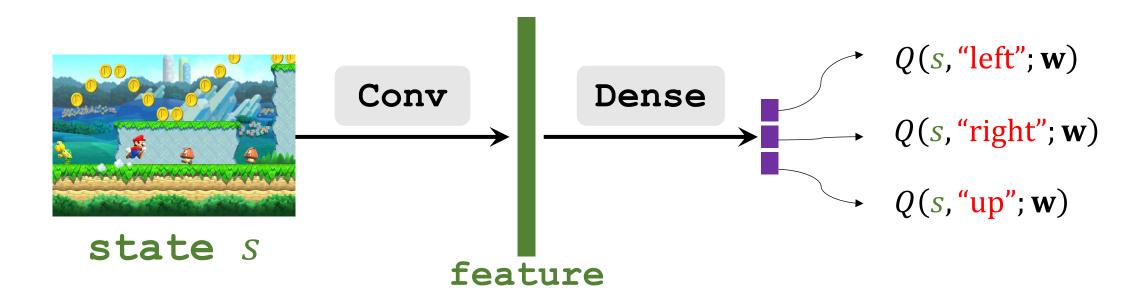
• Obviously, the best action is $a^* = \underset{a}{\operatorname{argmax}} Q^*(s, a)$.

Challenge: We do not know $Q^*(s, a)$.

- Solution: Deep Q Network (DQN)
- Use neural network $Q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q^*(s, \mathbf{a})$.

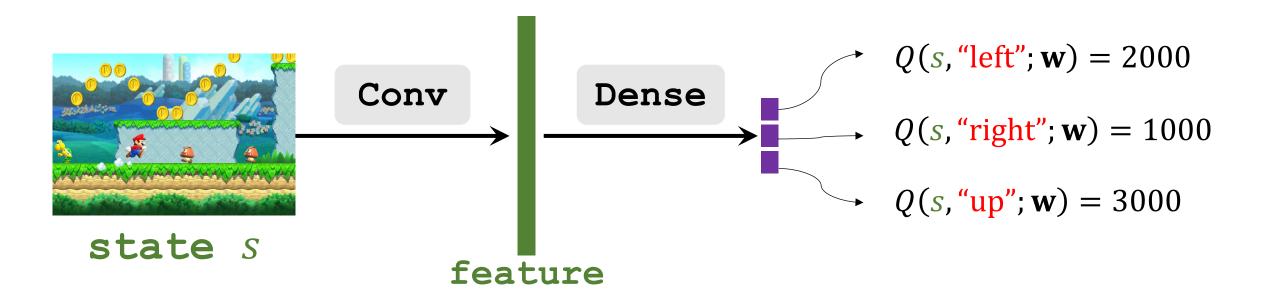
Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

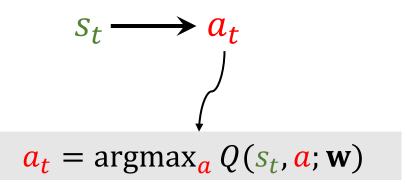


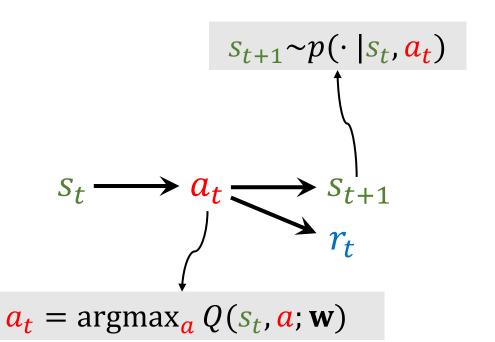
Deep Q Network (DQN)

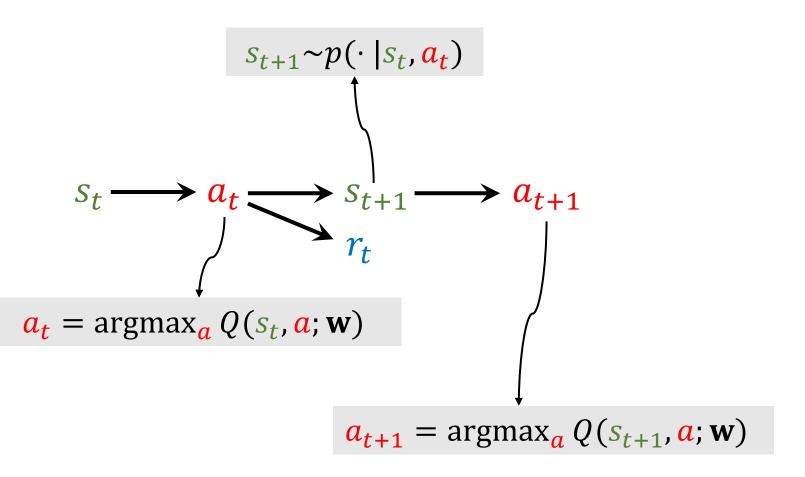
- Input shape: size of the screenshot.
- Output shape: dimension of action space.

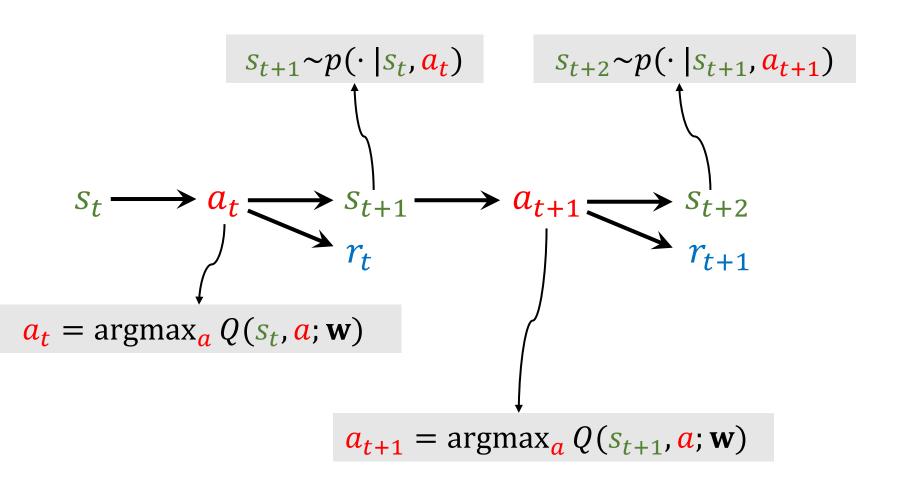


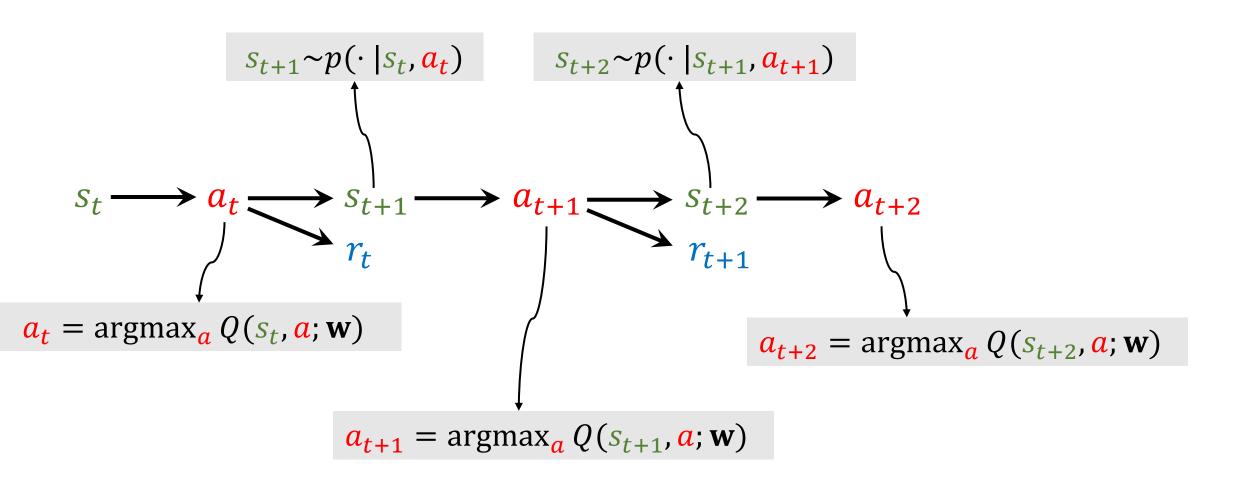
Question: Based on the predictions, what should be the action?

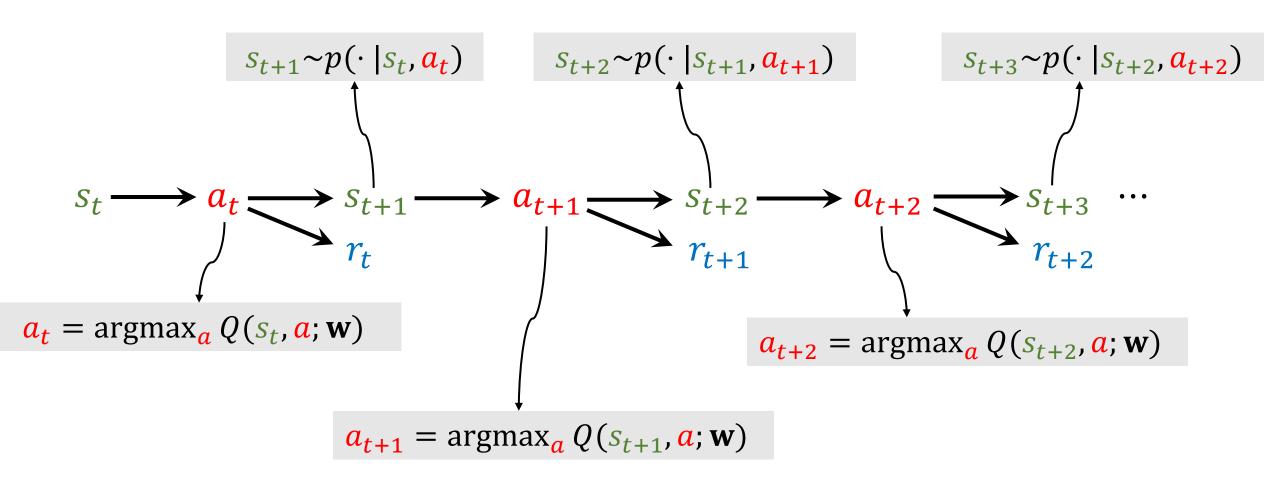








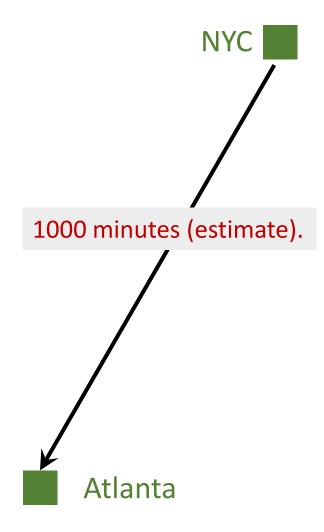




Reference

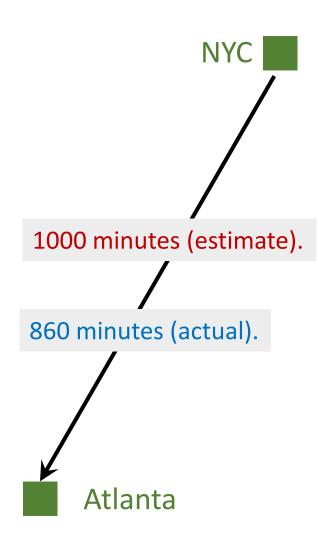
- 1. Sutton and others: A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation. In NIPS, 2008.
- 2. Sutton and others: Fast gradient-descent methods for temporal-difference learning with linear function approximation. In *ICML*, 2009.

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.



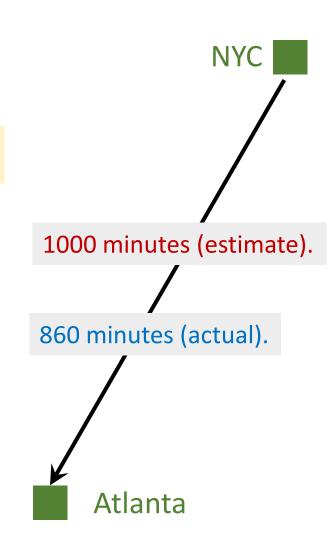
- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

- Make a prediction: $q = Q(\mathbf{w})$, e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.



- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

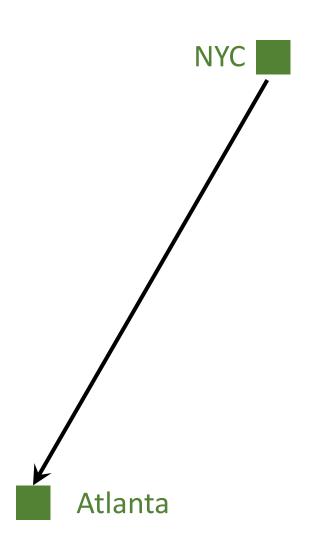
- Make a prediction: $q = Q(\mathbf{w})$, e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.
- Loss: $L = \frac{1}{2}(q y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial q}{\partial \mathbf{w}} \cdot \frac{\partial L}{\partial q} = (q y) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}.$
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.



- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

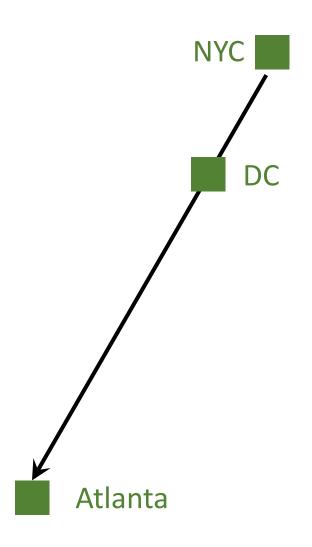
Question: How do I update the model?

Can I update the model before finishing the trip?



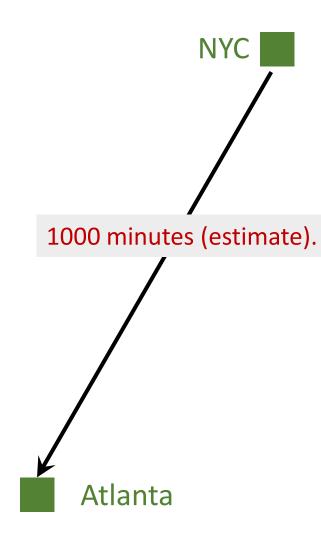
- I want to drive from NYC to Atlanta (via DC).
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

- Can I update the model before finishing the trip?
- Can I get a better w as soon as I arrived at DC?



• Model's estimate:

NYC to Atlanta: 1000 minutes (estimate).



Model's estimate:

NYC to Atlanta: 1000 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).

Model's estimate:

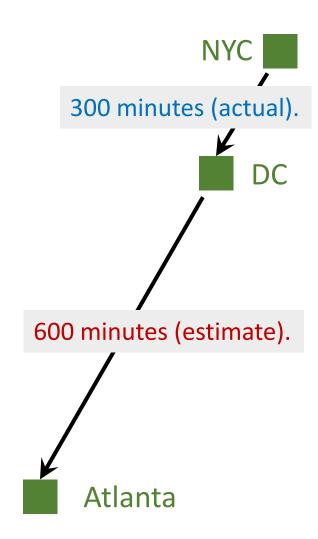
NYC to Atlanta: 1000 minutes (estimate).

• I arrived at DC; actual time cost:

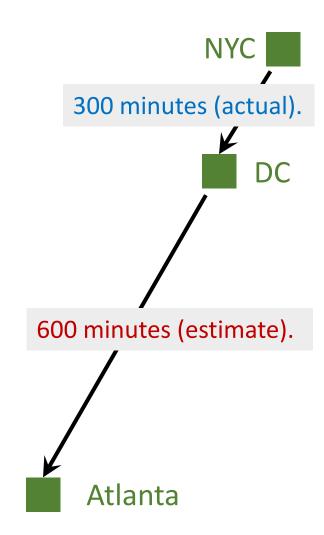
NYC to DC: 300 minutes (actual).

Model now updates its estimate:

DC to Atlanta: 600 minutes (estimate).

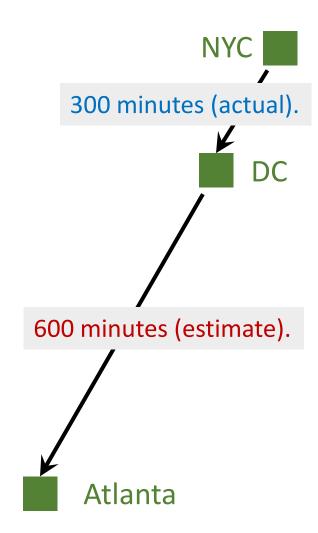


- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.



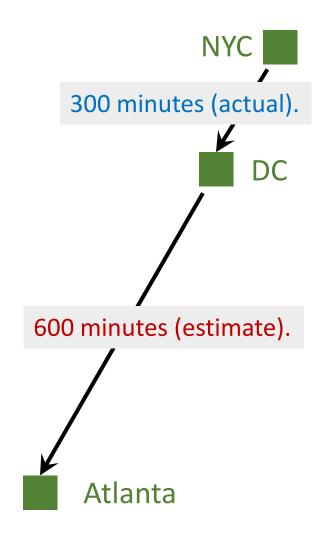
- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.

• TD target y = 900 is a more reliable estimate than 1000.



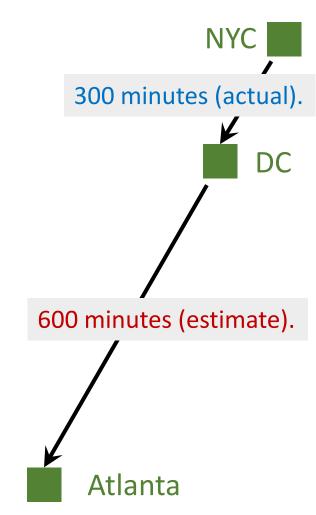
- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.
- TD target y = 900 is a more reliable estimate than 1000.
- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$.

 TD error



- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.
- TD target y = 900 is a more reliable estimate than 1000.
- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = (1000 900) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.

 TD error



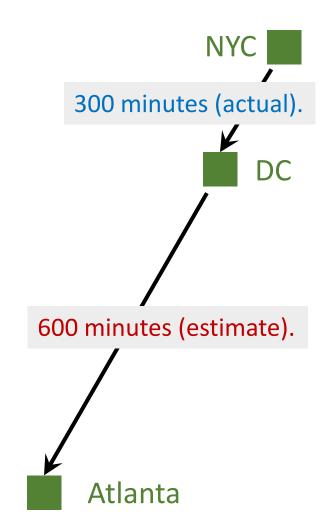
TD target.

- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes.

• TD target y = 900 is a more reliable estimate than 1000.

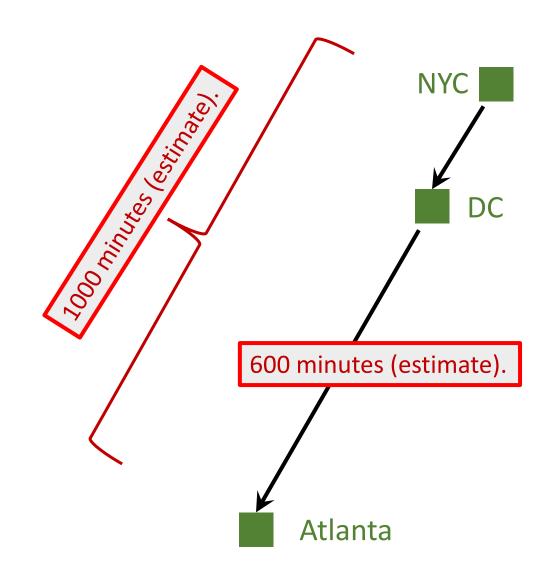
• Loss:
$$L = \frac{1}{2}(Q(\mathbf{w}) - y)^2$$
.

- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = (1000 900) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.



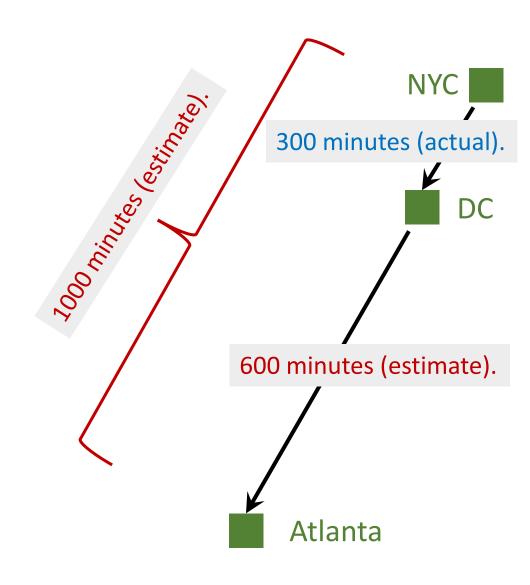
Why does TD learning work?

- Model's estimates:
 - NYC to Atlanta: 1000 minutes.
 - DC to Atlanta: 600 minutes.
 - → NYC to DC: 400 minutes.



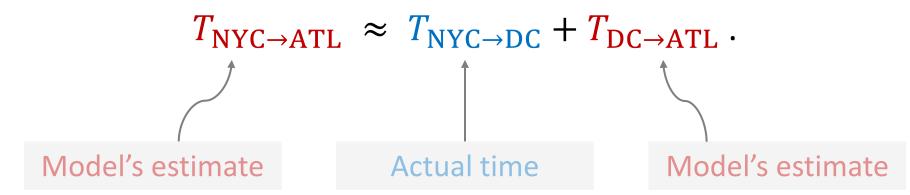
Why does TD learning work?

- Model's estimates:
 - NYC to Atlanta: 1000 minutes.
 - DC to Atlanta: 600 minutes.
 - → NYC to DC: 400 minutes.
- Ground truth:
 - NYC to DC: 300 minutes.
- TD error: $\delta = 400 300 = 100$

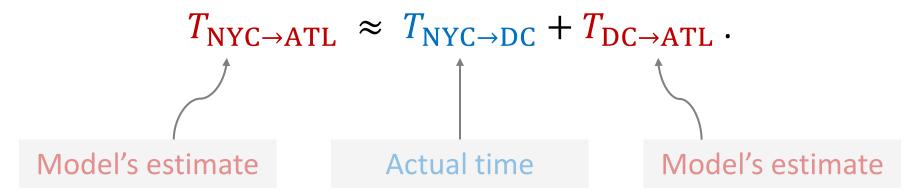


TD Learning for DQN

• In the "driving time" example, we have the equation:



• In the "driving time" example, we have the equation:



• In deep reinforcement learning:

$$Q^*(s_t, a_t) \approx r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a).$$

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

TD learning for DQN:

- DQN's output, $Q(s_t, a_t; \mathbf{w})$, is an estimate of U_t .
- DQN's output, $Q(s_{t+1}, a_{t+1}; \mathbf{w})$, is an estimate of U_{t+1} .

• Thus,
$$Q(s_t, a_t; \mathbf{w}) = \mathbb{E}\left[r_t + \gamma \cdot \max_a Q(S_{t+1}, a; \mathbf{w})\right].$$
 estimate of U_t

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

TD learning for DQN:

- DQN's output, $Q(s_t, a_t; \mathbf{w})$, is an estimate of U_t .
- DQN's output, $Q(s_{t+1}, a_{t+1}; \mathbf{w})$, is an estimate of U_{t+1} .
- Thus, $Q(s_t, a_t; \mathbf{w}) \approx r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}).$ Prediction TD target

Train DQN using TD learning

- Prediction: $Q(s_t, a_t; \mathbf{w}_t)$.
- TD target:

$$y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t).$$

Train DQN using TD learning

- Prediction: $Q(s_t, a_t; \mathbf{w}_t)$.
- TD target:

$$y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t).$$

- Loss: $L_t = \frac{1}{2} [Q(s_t, a_t; \mathbf{w}) y_t]^2$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L_t}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

Explore the Environment

• ε-greedy policy:

- With probability ε , the agent chooses a random action (exploration).
- With probability 1ε , the agent chooses the action that has the highest predicted Q-value (exploitation).
- **Decaying ε:** Often, DQN uses an **annealing strategy** where ε starts high (favoring exploration) and gradually decreases over time (favoring exploitation as the agent learns more).

Summary

Algorithm: One iteration of TD learning.

- 1. Observe state $S_t = S_t$ and perform action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \Big|_{\mathbf{w} = \mathbf{w}_t}$.

Algorithm: One iteration of TD learning.

- 1. Observe state $S_t = S_t$ and perform action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a}_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$.

Algorithm: One iteration of TD learning.

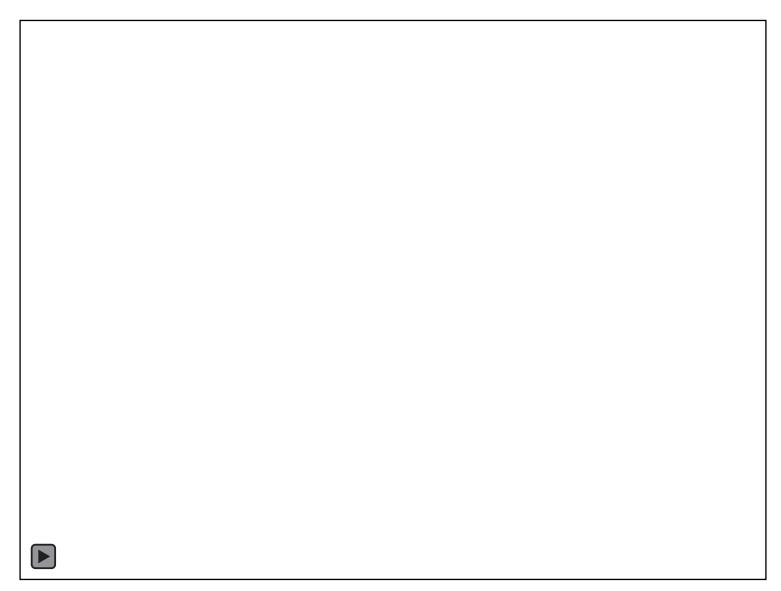
- 1. Observe state $S_t = S_t$ and perform action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $\mathbf{y_t} = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w_t})$.
- 6. Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot (\mathbf{q}_t \mathbf{y}_t) \cdot \mathbf{d}_t$.

Process of Q Learning

- Initialize network $Q(s, a; \mathbf{w})$
- Repeat:
 - Observe the current state s_t
 - Choose an action (ϵ -greedy strategy): select action a_t using an exploration policy:
 - With probability ε , choose a random action (exploration).
 - With probability 1ε , choose the action with the highest $Q(s_t, a_t; \mathbf{w})$ (exploitation).
 - Take the action and observe the reward
 - Update $Q(s, a; \mathbf{w})$ using TD learning
- After training, the optimal policy is:

$$\pi^*(s) \coloneqq \arg\max_{a} Q(s, a; \mathbf{w})$$

Play Breakout using DQN



Thank you!