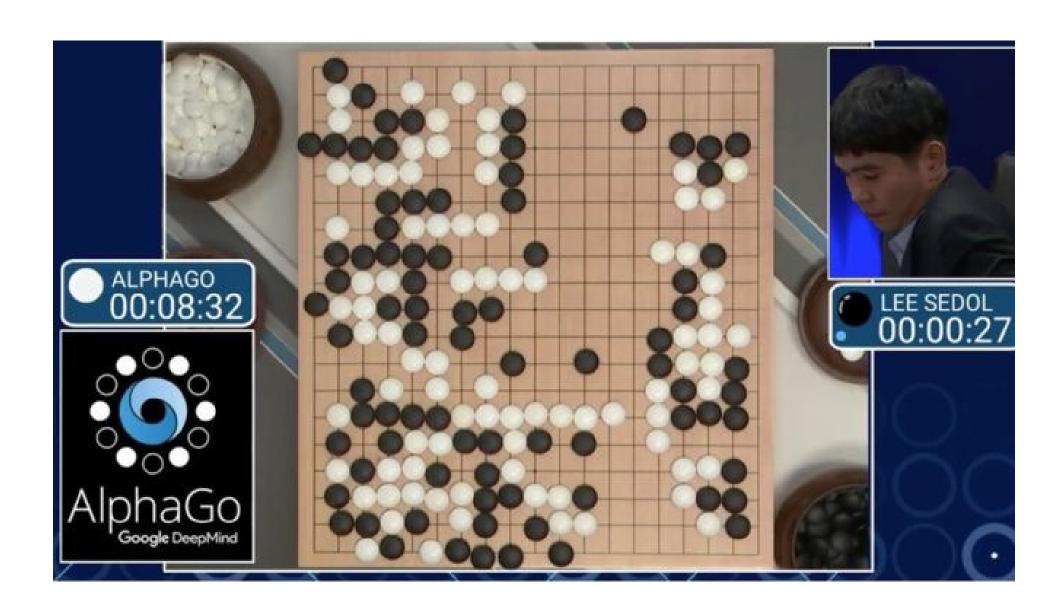
# Reinforcement Learning

Adapted from slides by Shusen Wang at Stevens Institute of Technology

http://wangshusen.github.io/

# AlphaGo



# A little bit probability theory...

### **Random Variable**

- Random variable: unknown; its values depends on outcomes of a random event.
- Uppercase letter X for random variable.



### **Random Variable**

- Random variable: unknown; its values depends on outcomes of a random event.
- Uppercase letter X for random variable.
- Lowercase letter x for an observed value.
- For example, I flipped a coin 4 times and observed:
  - $x_1 = 1$ ,
  - $x_2 = 1$ ,
  - $x_3 = 0$ ,
  - $x_4 = 1$ .

### **Probability Density Function (PDF)**

• PDF provides a relative likelihood that the value of the random variable would equal that sample.

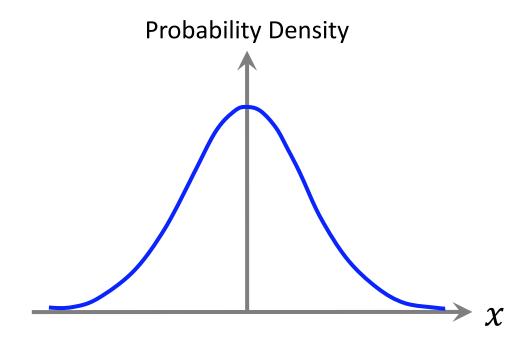
### **Probability Density Function (PDF)**

 PDF provides a relative likelihood that the value of the random variable would equal that sample.

#### **Example:** Gaussian distribution

- It is a continuous distribution.
- PDF:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$



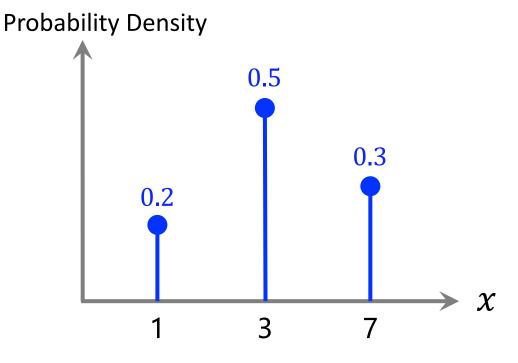
### **Probability Mass Function (PMF)**

 PMF is a function that gives the probability that a discrete random variable is exactly equal to some value

#### **Example**

- Discrete random variable:  $X \in \{1, 3, 7\}$ .
- PDF:

$$p(1) = 0.2,$$
  
 $p(3) = 0.5,$   
 $p(7) = 0.3.$ 



### **Properties of PDF/PMF**

- Random variable X is in the domain X.
- For continuous distribution,

$$\int_{\mathcal{X}} p(x) \, dx = 1.$$

For discrete distribution,

$$\sum_{x \in \mathcal{X}} p(x) = 1.$$

### **Expectation**

- Random variable X is in the domain  $\mathcal{X}$ .
- For continuous distribution, the expectation of f(X) is:

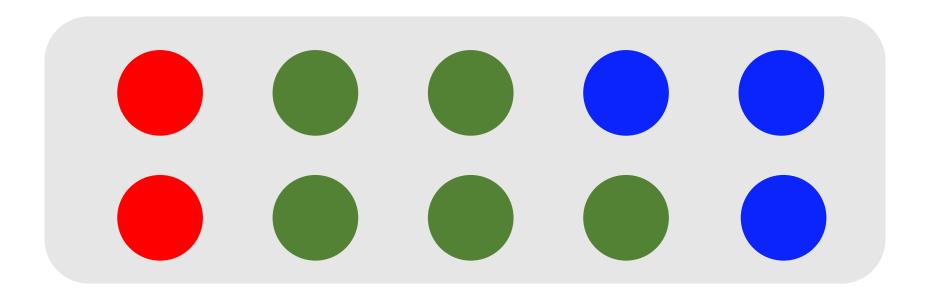
$$\mathbb{E}\left[f(X)\right] = \int_{\mathcal{X}} p(x) \cdot f(x) \, dx.$$

• For discrete distribution, the expectation of f(X) is:

$$\mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} p(x) \cdot f(x).$$

### **Random Sampling**

- There are 10 balls in the bin: 2 are red, 5 are green, and 3 are blue.
- Randomly sample a ball.
- What will be the color?



### Random Sampling

- Sample red ball w.p. 0.2, green ball w.p. 0.5, and blue ball w.p. 0.3.
- Randomly sample a ball.
- What will be the color?

### **Random Sampling**

- Sample red ball w.p. 0.2, green ball w.p. 0.5, and blue ball w.p. 0.3.
- Randomly sample a ball.
- What will be the color?

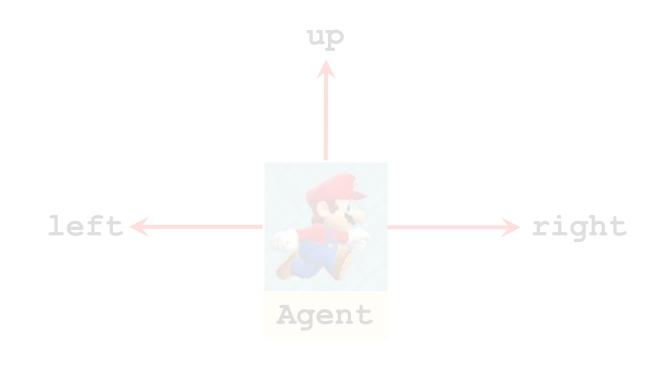
# **Terminologies**



### Terminology: state and action

state s (this frame)

Action  $\alpha \in \{\text{left, right, up}\}\$ 

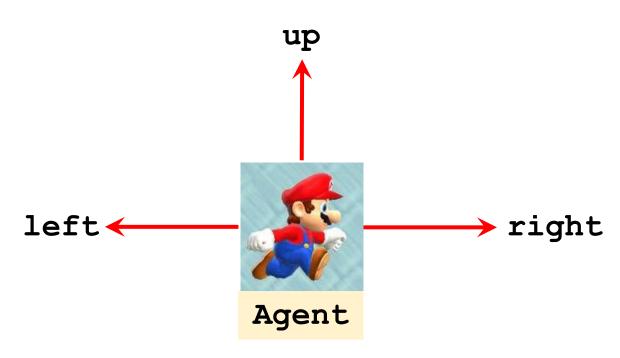


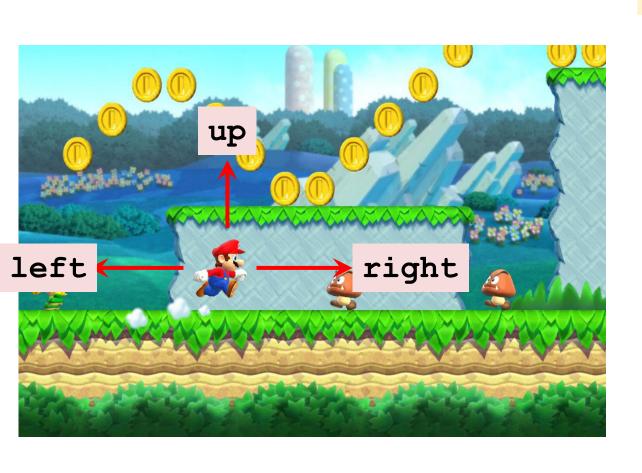
### Terminology: state and action

state s (this frame)

Action  $a \in \{\text{left, right, up}\}\$ 

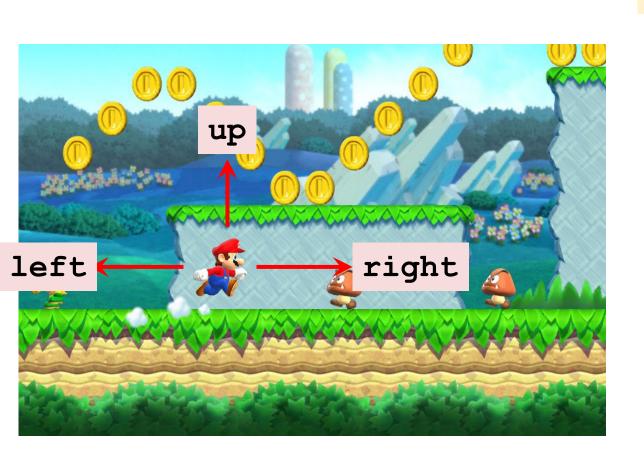






### policy $\pi$

- Policy function  $\pi$ :  $(s, a) \mapsto [0,1]$ :  $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
  - $\pi(\text{left} \mid s) = 0.2$ ,
  - $\pi(\text{right}|s) = 0.1$ ,
  - $\pi(\text{up} \mid s) = 0.7$ .
- Upon observing state S = s, the agent's action A can be random.

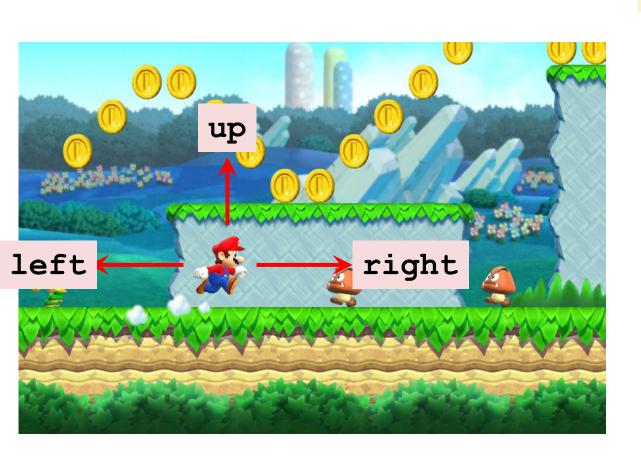


### policy $\pi$

• Policy function  $\pi$ :  $(s, a) \mapsto [0,1]$ :  $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$ 

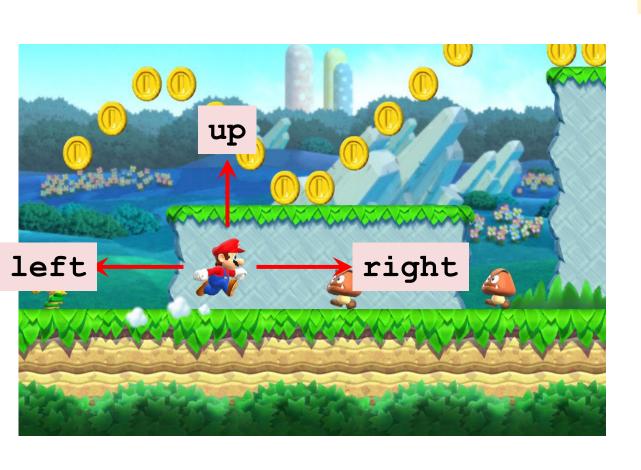
• It is the probability of taking action 
$$A = a$$
 given state  $s$ , e.g.,

- $\pi(\text{left} \mid s) = 0.2$ ,
- $\pi(\text{right}|s) = 0.1$ ,
- $\pi(\text{up} \mid s) = 0.7$ .
- Upon observing state S = s, the agent's action A can be random.



### policy $\pi$

- Policy function  $\pi$ :  $(s, a) \mapsto [0,1]$ :  $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
  - $\pi(\text{left} \mid s) = 0.2$ ,
  - $\pi(\text{right}|s) = 0.1$ ,
  - $\pi(\text{up} \mid s) = 0.7$ .
- Upon observing state S = s, the agent's action A can be random.



### policy $\pi$

- Policy function  $\pi$ :  $(s, a) \mapsto [0,1]$ :  $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$
- It is the probability of taking action A = a given state s, e.g.,
  - $\pi(\text{left} \mid s) = 0.2$ ,
  - $\pi(\text{right}|s) = 0.1$ ,
  - $\pi(\text{up} \mid s) = 0.7$ .
- Upon observing state S = s, the agent's action A can be random.

### reward R



• Collect a coin: R = +1

### reward R



• Collect a coin: R = +1

• Win the game: R = +10000



#### reward R

• Collect a coin: R = +1

• Win the game: R = +10000

• Touch a Goomba: R = -10000 (game over).



#### reward R

• Collect a coin: R = +1

• Win the game: R = +10000

• Touch a Goomba: R = -10000 (game over).

• Nothing happens: R = 0



### state transition

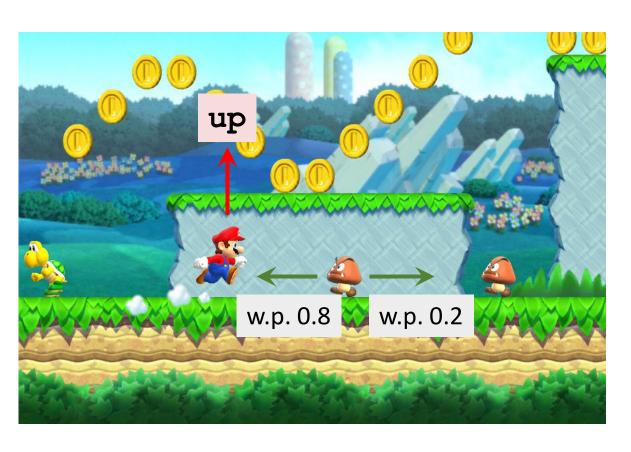




#### state transition



• E.g., "up" action leads to a new state.

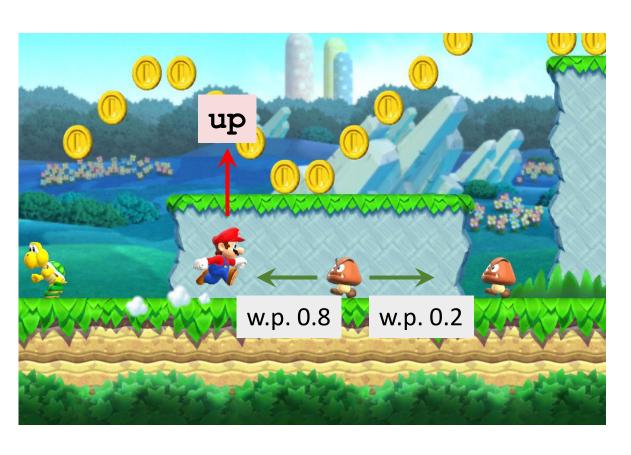


#### state transition



• E.g., "up" action leads to a new state.

- State transition can be random.
- Randomness is from the environment.



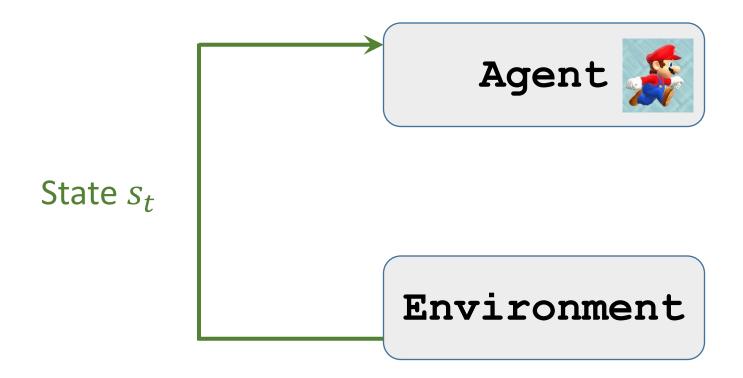
#### state transition



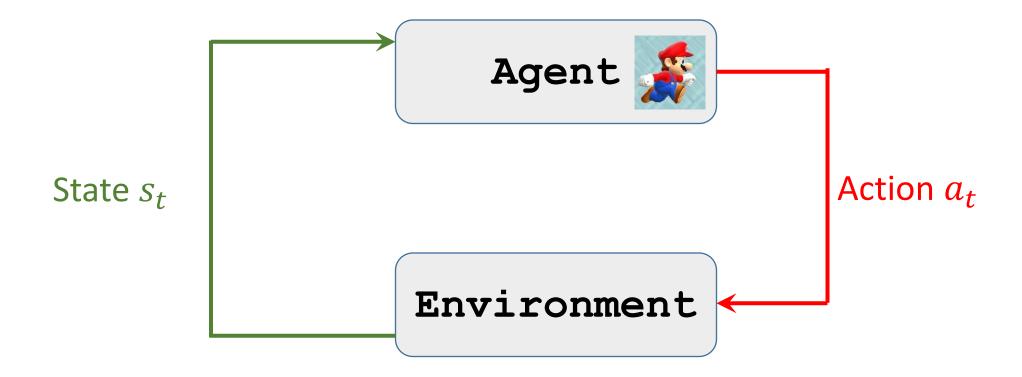
• E.g., "up" action leads to a new state.

- State transition can be random.
- Randomness is from the environment.
- $p(s'|s, a) = \mathbb{P}(S' = s'|S = s, A = a)$ .

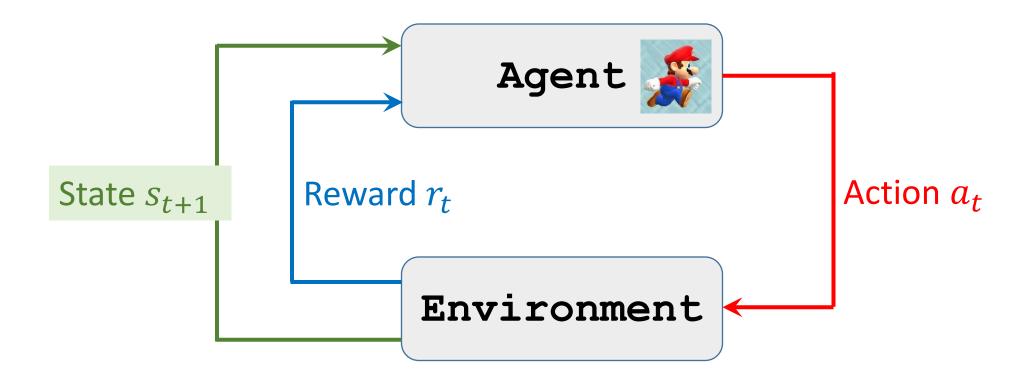
## Terminology: agent environment interaction



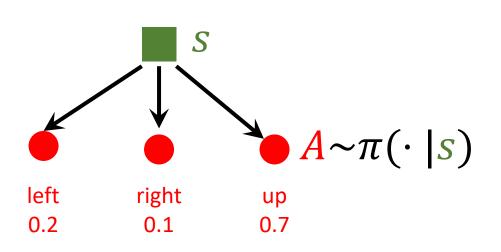
### Terminology: agent environment interaction



### Terminology: agent environment interaction



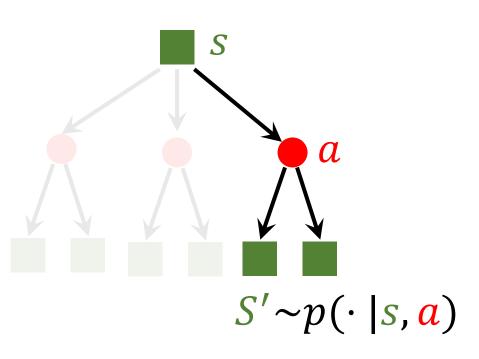
### Randomness in Reinforcement Learning



#### Actions have randomness.

- Given state *s*, the action can be random, e.g., .
  - $\pi(\text{``left''}|s) = 0.2$ ,
  - $\pi(\text{"right"}|s) = 0.1$ ,
  - $\pi(\text{"up"}|s) = 0.7.$

### Randomness in Reinforcement Learning



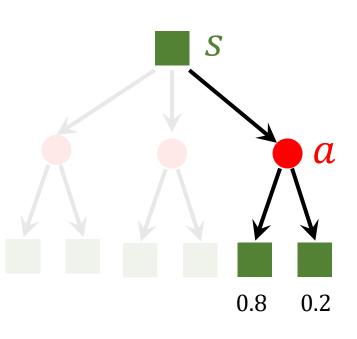
#### Actions have randomness.

- Given state *s*, the action can be random, e.g., .
  - $\pi(\text{``left''}|s) = 0.2$ ,
  - $\pi(\text{"right"}|s) = 0.1$ ,
  - $\pi(\text{"up"}|s) = 0.7.$

#### State transitions have randomness.

• Given state S = s and action A = a, the environment randomly generates a new state S'.

### Randomness in Reinforcement Learning



#### Actions have randomness.

- Given state *s*, the action can be random, e.g., .
  - $\pi(\text{``left''}|s) = 0.2$ ,
  - $\pi(\text{"right"}|s) = 0.1$ ,
  - $\pi(\text{"up"}|s) = 0.7.$

#### State transitions have randomness.

• Given state S = s and action A = a, the environment randomly generates a new state S'.

### Play the game using AI



- Observe a frame (state  $s_1$ )
- $\rightarrow$  Make action  $a_1$  (left, right, or up)
- $\rightarrow$  Observe a new frame (state  $s_2$ ) and reward  $r_1$
- $\rightarrow$  Make action  $a_2$
- · **→** ...

# Play the game using AI



- Observe a frame (state  $s_1$ )
- $\rightarrow$  Make action  $a_1$  (left, right, or up)
- $\rightarrow$  Observe a new frame (state  $s_2$ ) and reward  $r_1$
- $\rightarrow$  Make action  $a_2$
- → ...

• (state, action, reward) trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_T, a_T, r_T$$

#### **Rewards and Returns**

**Definition:** Return (aka cumulative future reward).

• 
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

**Definition:** Return (aka cumulative future reward).

• 
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

**Question:** Are  $R_t$  and  $R_{t+1}$  equally important?

- Which of the followings do you prefer?
  - I give you \$100 right now.
  - I will give you \$100 one year later.

**Definition:** Return (aka cumulative future reward).

• 
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

**Question:** Are  $R_t$  and  $R_{t+1}$  equally important?

- Which of the followings do you prefer?
  - I give you \$100 right now.
  - I will give you \$100 one year later.
- Future reward is less valuable than present reward.
- $R_{t+1}$  should be given less weight than  $R_t$ .

**Definition:** Return (aka cumulative future reward).

• 
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

**Definition:** Discounted return (aka cumulative discounted future reward).

- $\gamma$ : discount rate (tuning hyper-parameter).
- $U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$

#### Randomness in Returns

**Definition:** Discounted return (at time step t).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

At time step t, the return  $U_t$  is random.

- Two sources of randomness:
  - 1. Action can be random:  $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$ .
  - 2. New state can be random:  $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$ .

#### Randomness in Returns

**Definition:** Discounted return (at time step t).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

At time step t, the return  $U_t$  is random.

- Two sources of randomness:
  - 1. Action can be random:  $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$ .
  - 2. New state can be random:  $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$ .
- For any  $i \geq t$ , the reward  $R_i$  depends on  $S_i$  and  $A_i$ .
- Thus, given  $s_t$ , the return  $U_t$  depends on the random variables:
  - $A_t, A_{t+1}, A_{t+2}, \cdots$  and  $S_{t+1}, S_{t+2}, \cdots$ .

#### **Value Functions**

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Action-value function for policy  $\pi$ .

• 
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

• Return  $U_t$  depends on states  $S_t, S_{t+1}, S_{t+2}, \cdots$  and actions  $A_t, A_{t+1}, A_{t+2}, \cdots$ .

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Action-value function for policy  $\pi$ .

• 
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

- Return  $U_t$  depends on states  $S_t, S_{t+1}, S_{t+2}, \cdots$  and actions  $A_t, A_{t+1}, A_{t+2}, \cdots$ .
- Actions are random:  $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$ . (Policy function.)
- States are random:  $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$ . (State transition.)

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Action-value function for policy  $\pi$ .

• 
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A}_t = \mathbf{a}_t\right].$$

**Definition:** Optimal action-value function.

• 
$$Q^*(s_t, \mathbf{a}_t) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a}_t).$$

#### State-Value Function V(s)

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Action-value function for policy  $\pi$ .

• 
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

**Definition:** State-value function.

• 
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A})]$$

# State-Value Function V(s)

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Action-value function for policy  $\pi$ .

• 
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

**Definition:** State-value function.

• 
$$V_{\pi}(s_t) = \mathbb{E}_{A}[Q_{\pi}(s_t, A)] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$
. (Actions are discrete.)



# State-Value Function V(s)

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Action-value function for policy  $\pi$ .

• 
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

**Definition:** State-value function.

• 
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}} \left[ Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$
 (Actions are discrete.)

• 
$$V_{\pi}(s_t) = \mathbb{E}_A \left[ Q_{\pi}(s_t, A) \right] = \int \pi(a|s_t) \cdot Q_{\pi}(s_t, a) da$$
. (Actions are continuous.)

#### **Understanding the Value Functions**

- Action-value function:  $Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right]$ .
- Given policy  $\pi$ ,  $Q_{\pi}(s, a)$  evaluates how good it is for an agent to pick action a while being in state s.
- $Q^*(s_t, a_t)$  evaluates how good it is for an agent to pick action a while being in state s no matter what the policy is.

#### **Understanding the Value Functions**

- Action-value function:  $Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right]$ .
- Given policy  $\pi$ ,  $Q_{\pi}(s, a)$  evaluates how good it is for an agent to pick action a while being in state s.
- $Q^*(s_t, a_t)$  evaluates how good it is for an agent to pick action a while being in state s no matter what the policy is.
- State-value function:  $V_{\pi}(s) = \mathbb{E}_{A} \left[ Q_{\pi}(s, A) \right]$
- For fixed policy  $\pi$ ,  $V_{\pi}(s)$  evaluates how good the situation is in state s.
- $\mathbb{E}_{S}[V_{\pi}(S)]$  evaluates how good the policy  $\pi$  is.

# Play games using reinforcement learning

# How does AI control the agent?

Suppose we have a good policy  $\pi(a|s)$ .

- Upon observing the state  $s_t$ ,
- random sampling:  $a_t \sim \pi(\cdot | s_t)$ .

# How does AI control the agent?

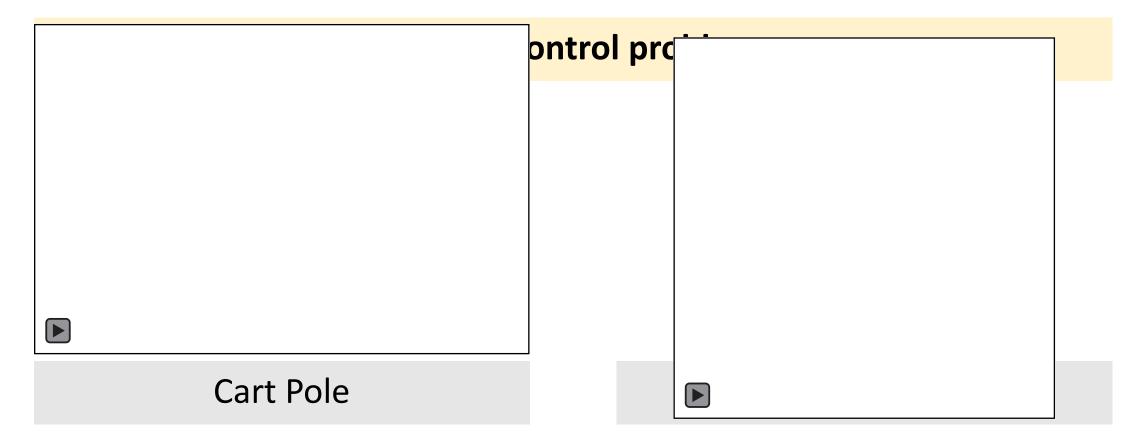
Suppose we have a good policy  $\pi(a|s)$ .

- Upon observing the state  $s_t$ ,
- random sampling:  $a_t \sim \pi(\cdot | s_t)$ .

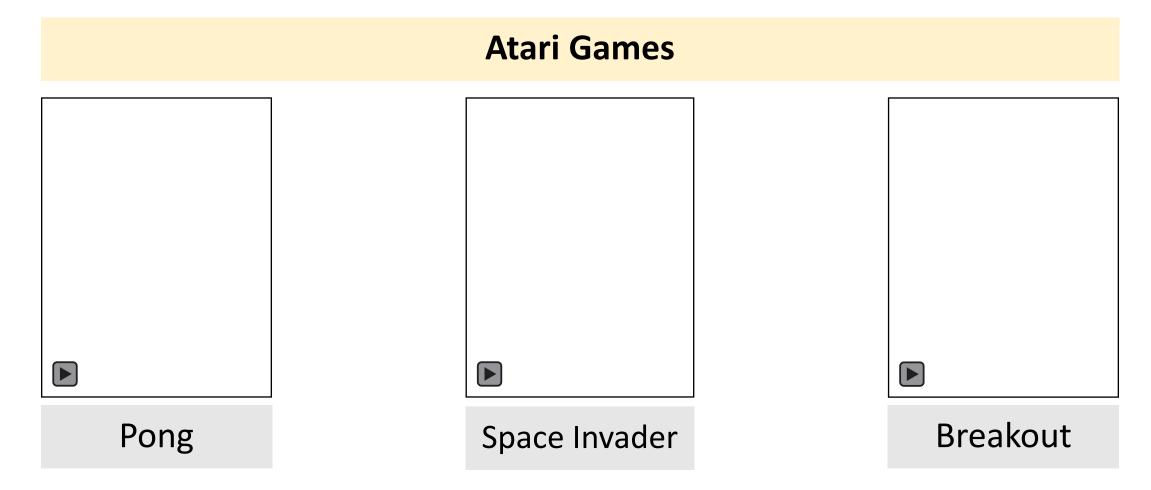
Suppose we know the optimal action-value function  $Q^*(s, a)$ .

- Upon observe the state  $s_t$ ,
- choose the action that maximizes the value:  $a_t = \operatorname{argmax}_a Q^*(s_t, a)$ .

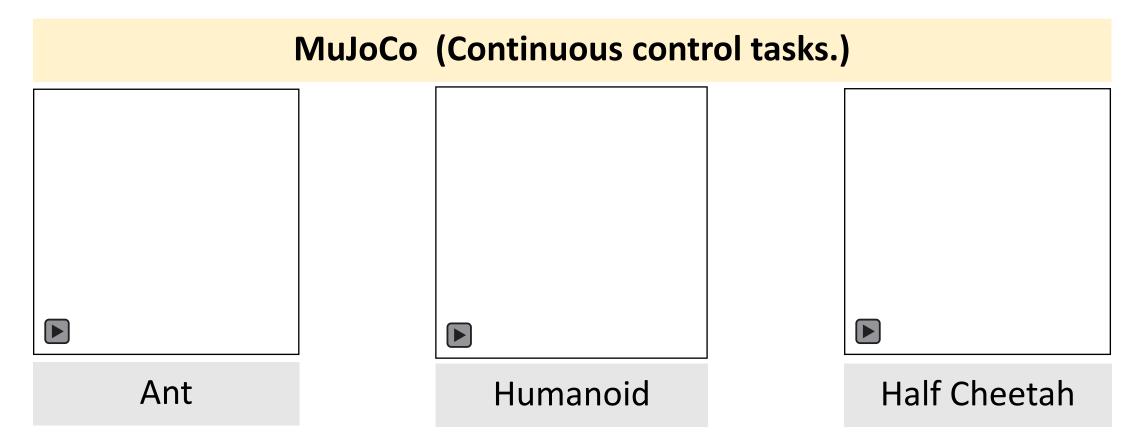
- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/

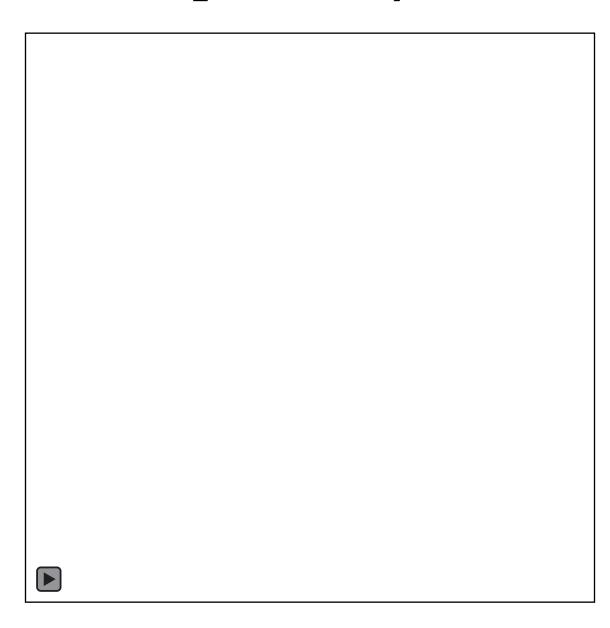


- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/



- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/





#### Play CartPole Game

```
import gym
env = gym.make('CartPole-v0')
```

- Get the environment of CartPole from Gym.
- "env" provides states and reward.



#### **Play CartPole Game**

```
state = env.reset()
for t in range (100) \rightarrow A window pops up rendering CartPole.
    env.render()
                                      A random action.
    print(state)
    action = env.action space.sample()
     state, reward, done, info = env.step(action)
    if done: "done=1" means finished (win or lose the game)
         print('Finished')
         break
env.close()
```

# **Summary**

# Summary

#### **Terminologies**

- Agent
- Environment
- State s.
- Action a.
- Reward *r*.
- Policy  $\pi(a|s)$
- State transition p(s'|s, a).

# Summary

#### **Terminologies**

Agent



- Environment
- State s.
- Action a.
- Reward *r*.
- Policy  $\pi(a|s)$
- State transition p(s'|s,a).

#### **Return and Value**

• Return:

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

Action-value function:

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[U_t | s_t, \mathbf{a_t}\right].$$

Optimal action-value function:

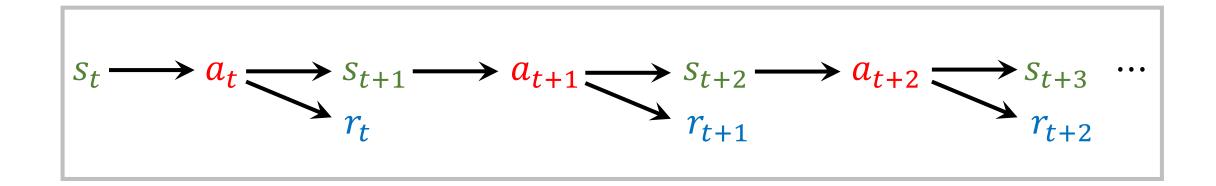
$$Q^*(s_t, \mathbf{a_t}) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a_t}).$$

State-value function:

$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A})].$$

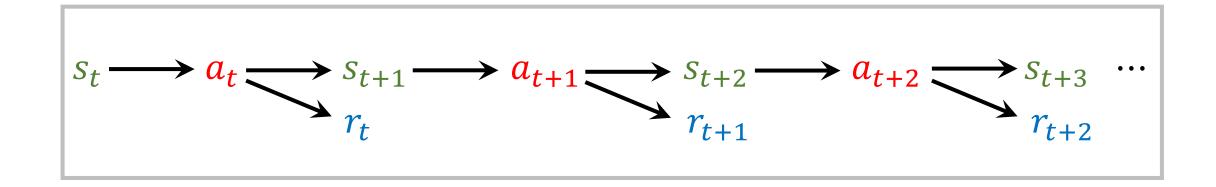
# Play game using reinforcement learning

• Observe state  $s_t$ , make action  $a_t$ , environment gives  $s_{t+1}$  and reward  $r_t$ .



# Play game using reinforcement learning

• Observe state  $s_t$ , make action  $a_t$ , environment gives  $s_{t+1}$  and reward  $r_t$ .



• The agent can be controlled by either  $\pi(a|s)$  or  $Q^*(s,a)$ .

# We are going to study...

- 2. Value-based learning.
  - Deep Q network (DQN) for approximating  $Q^*(s, a)$ .
  - Learn the network parameters using temporal different (TD).
- 3. Policy-based learning.
  - Policy network for approximating  $\pi(a|s)$ .
  - Learn the network parameters using policy gradient.
- 4. Actor-critic method. (Policy network + value network.)
- 5. Example: AlphaGo

# Value-Based Reinforcement Learning

Shusen Wang

#### **Action-Value Functions**

#### **Discounted Return**

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

- The return depends on actions  $A_t, A_{t+1}, A_{t+2}, \cdots$  and states  $S_t, S_{t+1}, S_{t+2}, \cdots$
- Actions are random:  $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$ . (Policy function.)
- States are random:  $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$ . (State transition.)

## Action-Value Functions Q(s, a)

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Action-value function for policy  $\pi$ .

• 
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

- Taken w.r.t. actions  $A_{t+1}, A_{t+2}, A_{t+3}, \cdots$  and states  $S_{t+1}, S_{t+2}, S_{t+3}, \cdots$
- Integrate out everything except for the observations:  $A_t = a_t$  and  $S_t = s_t$ .

### Action-Value Functions Q(s, a)

**Definition:** Discounted return (aka cumulative discounted future reward).

• 
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

**Definition:** Action-value function for policy  $\pi$ .

• 
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A}_t = \mathbf{a}_t\right].$$

**Definition:** Optimal action-value function.

- $Q^*(s_t, \mathbf{a}_t) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a}_t).$
- Whatever policy function  $\pi$  is used, the result of taking  $a_t$  at state  $s_t$  cannot be better than  $Q^*(s_t, a_t)$ .

## Deep Q-Network (DQN)

### Approximate the Q Function

**Goal:** Win the game ( $\approx$  maximize the total reward.)

**Question:** If we know  $Q^*(s, a)$ , what is the best action?

### Approximate the Q Function

**Goal:** Win the game ( $\approx$  maximize the total reward.)

**Question:** If we know  $Q^*(s, a)$ , what is the best action?

• Obviously, the best action is  $a^* = \underset{a}{\operatorname{argmax}} \, Q^*(s, a)$ .

 $Q^*$  is an indicator of how good it is for an agent to pick action a while being in state s.

## Approximate the Q Function

**Goal:** Win the game ( $\approx$  maximize the total reward.)

**Question:** If we know  $Q^*(s, a)$ , what is the best action?

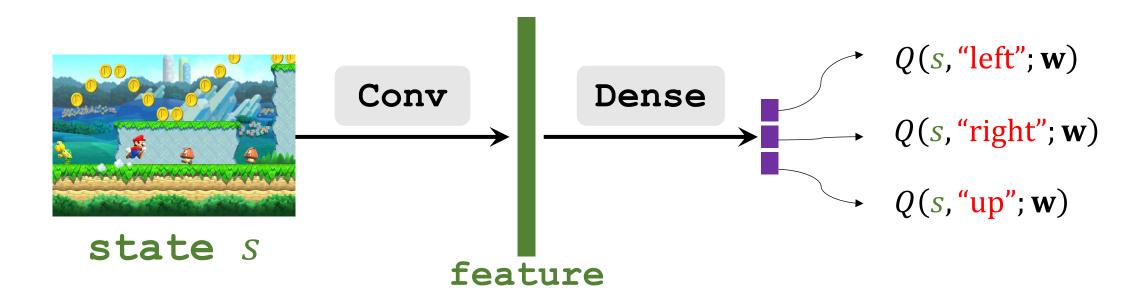
• Obviously, the best action is  $a^* = \underset{a}{\operatorname{argmax}} Q^*(s, a)$ .

**Challenge:** We do not know  $Q^*(s, a)$ .

- Solution: Deep Q Network (DQN)
- Use neural network  $Q(s, \mathbf{a}; \mathbf{w})$  to approximate  $Q^*(s, \mathbf{a})$ .

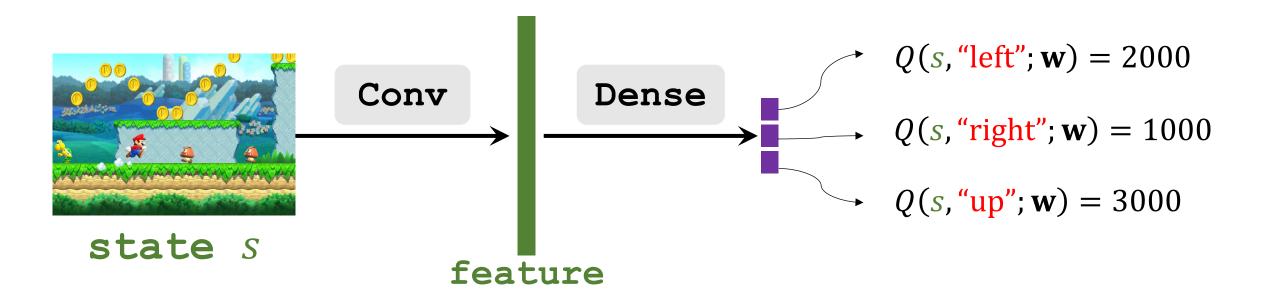
### Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

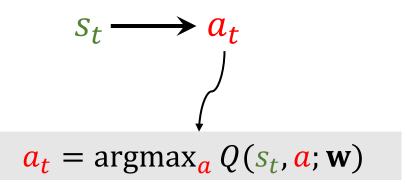


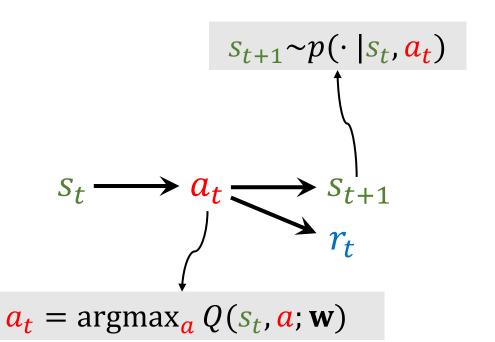
#### Deep Q Network (DQN)

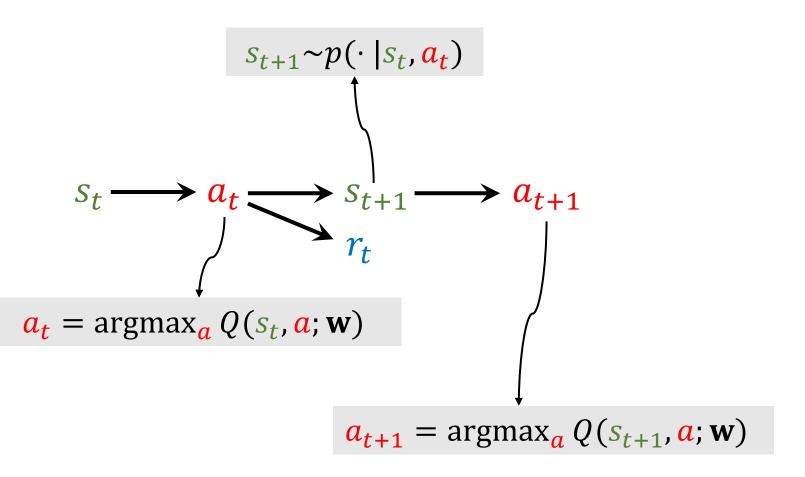
- Input shape: size of the screenshot.
- Output shape: dimension of action space.

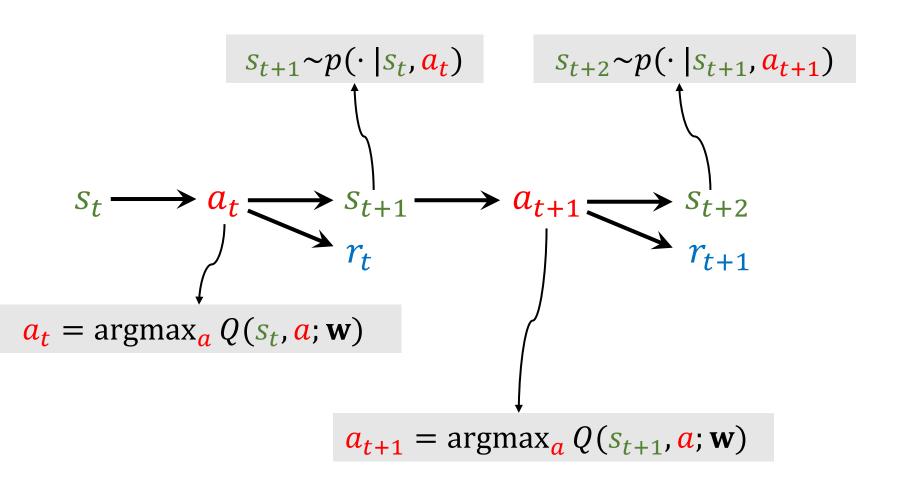


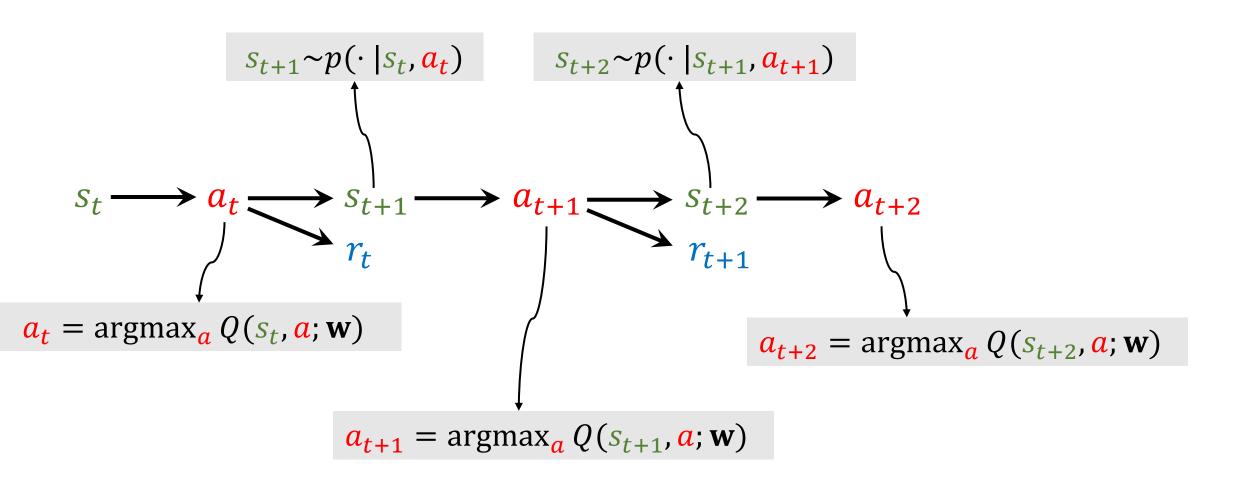
Question: Based on the predictions, what should be the action?

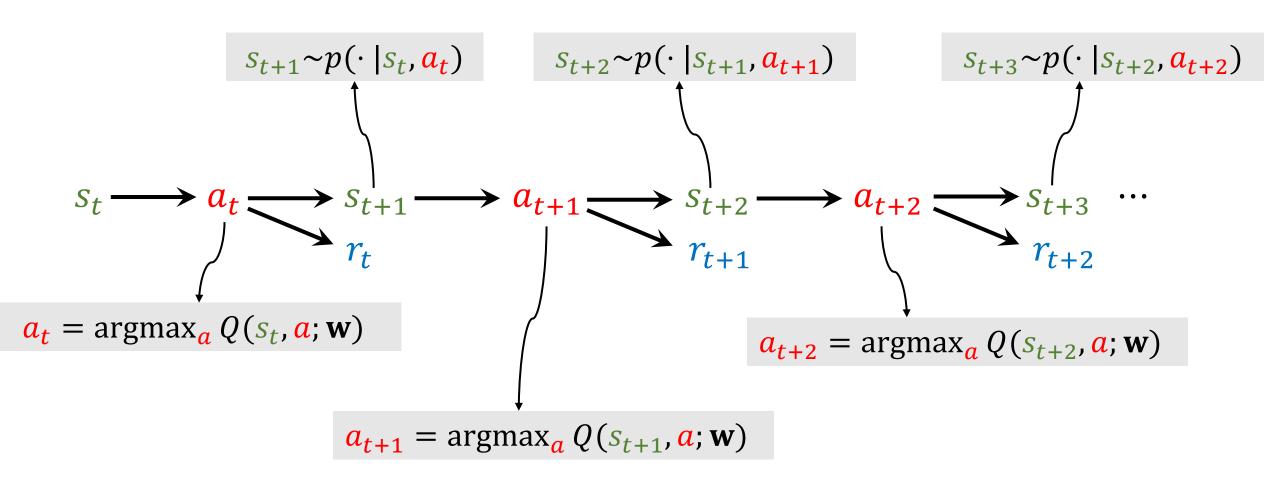








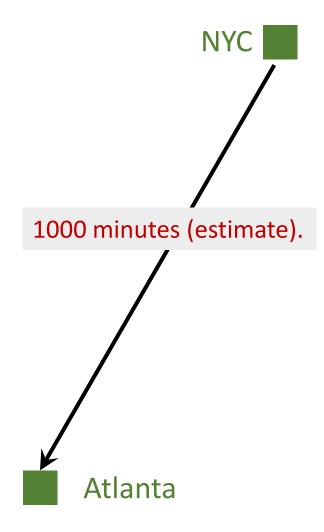




#### Reference

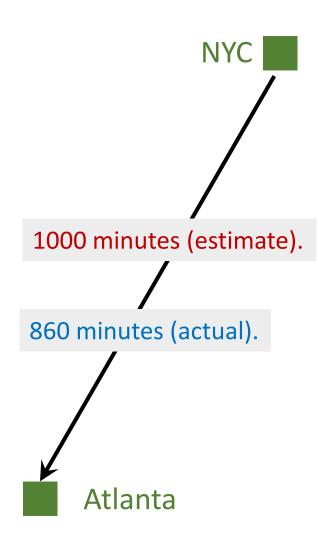
- 1. Sutton and others: A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation. In NIPS, 2008.
- 2. Sutton and others: Fast gradient-descent methods for temporal-difference learning with linear function approximation. In *ICML*, 2009.

- I want to drive from NYC to Atlanta.
- Model  $Q(\mathbf{w})$  estimates the time cost, e.g., 1000 minutes.



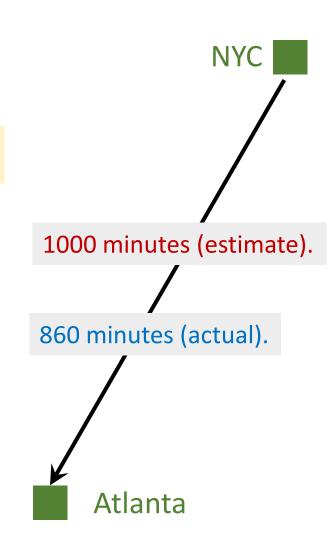
- I want to drive from NYC to Atlanta.
- Model  $Q(\mathbf{w})$  estimates the time cost, e.g., 1000 minutes.

- Make a prediction:  $q = Q(\mathbf{w})$ , e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.



- I want to drive from NYC to Atlanta.
- Model  $Q(\mathbf{w})$  estimates the time cost, e.g., 1000 minutes.

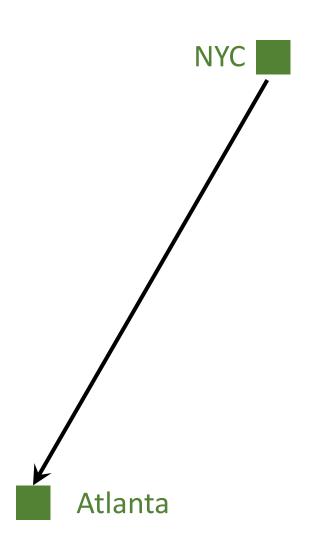
- Make a prediction:  $q = Q(\mathbf{w})$ , e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.
- Loss:  $L = \frac{1}{2}(q y)^2$ .
- Gradient:  $\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial q}{\partial \mathbf{w}} \cdot \frac{\partial L}{\partial q} = (q y) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}.$
- Gradient descent:  $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$ .



- I want to drive from NYC to Atlanta.
- Model  $Q(\mathbf{w})$  estimates the time cost, e.g., 1000 minutes.

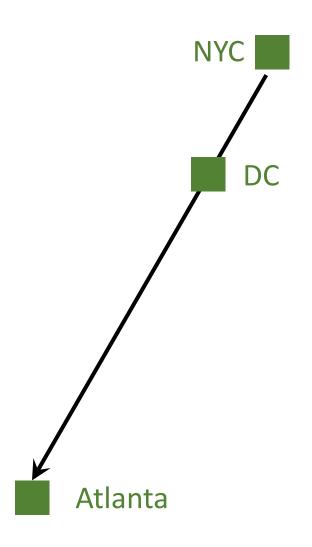
Question: How do I update the model?

Can I update the model before finishing the trip?



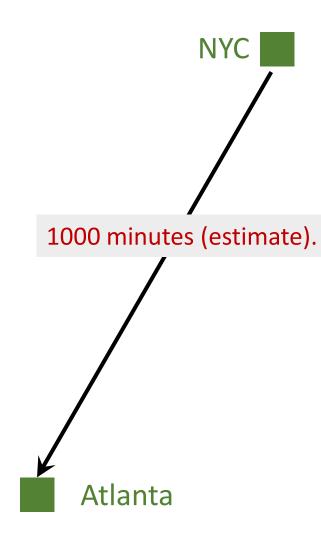
- I want to drive from NYC to Atlanta (via DC).
- Model  $Q(\mathbf{w})$  estimates the time cost, e.g., 1000 minutes.

- Can I update the model before finishing the trip?
- Can I get a better w as soon as I arrived at DC?



• Model's estimate:

NYC to Atlanta: 1000 minutes (estimate).



Model's estimate:

NYC to Atlanta: 1000 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).



Model's estimate:

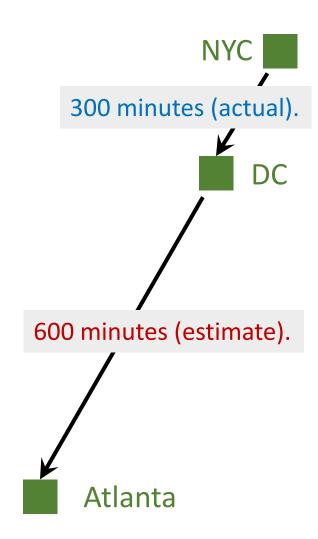
NYC to Atlanta: 1000 minutes (estimate).

• I arrived at DC; actual time cost:

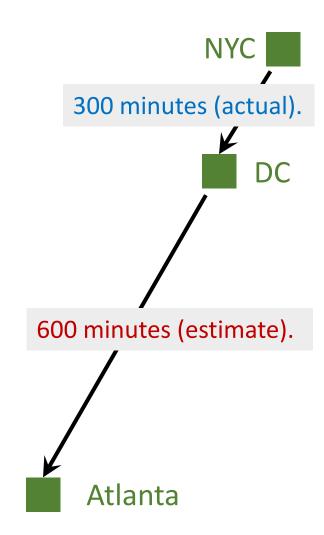
NYC to DC: 300 minutes (actual).

Model now updates its estimate:

DC to Atlanta: 600 minutes (estimate).

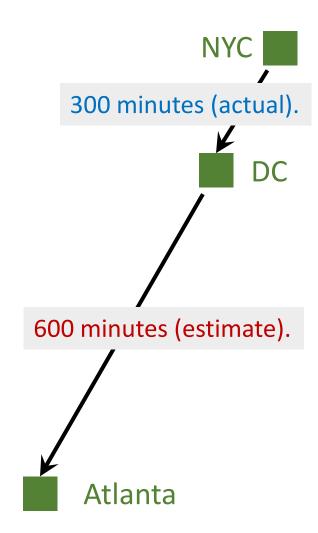


- Model's estimate:  $Q(\mathbf{w}) = 1000$  minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.



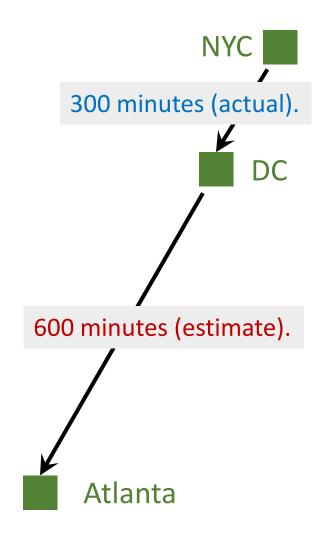
- Model's estimate:  $Q(\mathbf{w}) = 1000$  minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.

• TD target y = 900 is a more reliable estimate than 1000.



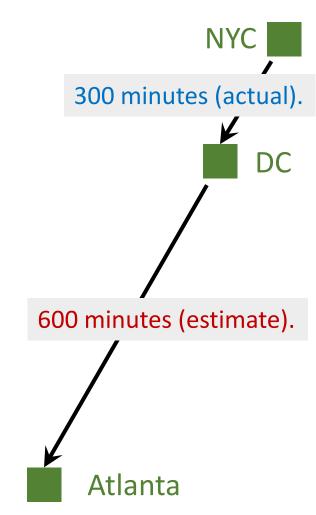
- Model's estimate:  $Q(\mathbf{w}) = 1000$  minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.
- TD target y = 900 is a more reliable estimate than 1000.
- Loss:  $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$ .

  TD error



- Model's estimate:  $Q(\mathbf{w}) = 1000$  minutes.
- Updated estimate: 300 + 600 = 900 minutes. TD target.
- TD target y = 900 is a more reliable estimate than 1000.
- Loss:  $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$ .
- Gradient:  $\frac{\partial L}{\partial \mathbf{w}} = (1000 900) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$ .

  TD error



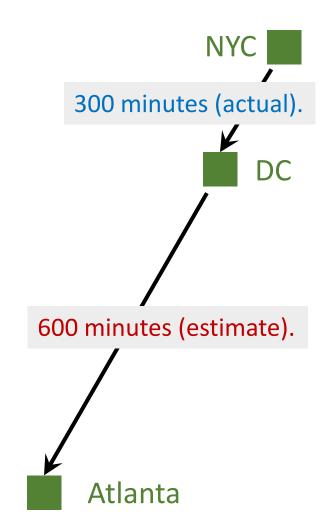
TD target.

- Model's estimate:  $Q(\mathbf{w}) = 1000$  minutes.
- Updated estimate: 300 + 600 = 900 minutes.

• TD target y = 900 is a more reliable estimate than 1000.

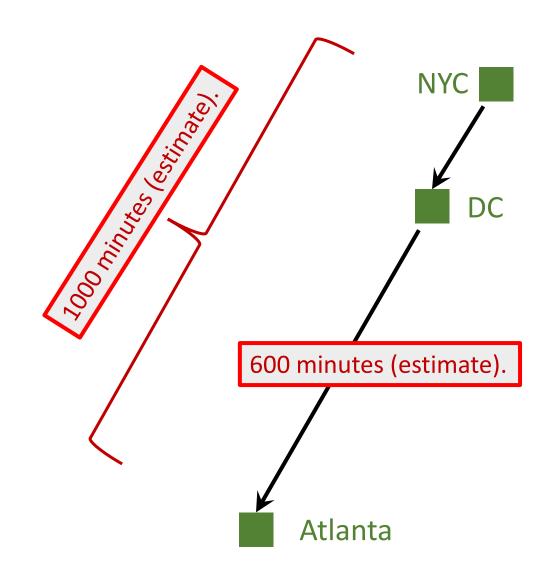
• Loss: 
$$L = \frac{1}{2}(Q(\mathbf{w}) - y)^2$$
.

- Gradient:  $\frac{\partial L}{\partial \mathbf{w}} = (1000 900) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$ .
- Gradient descent:  $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$ .



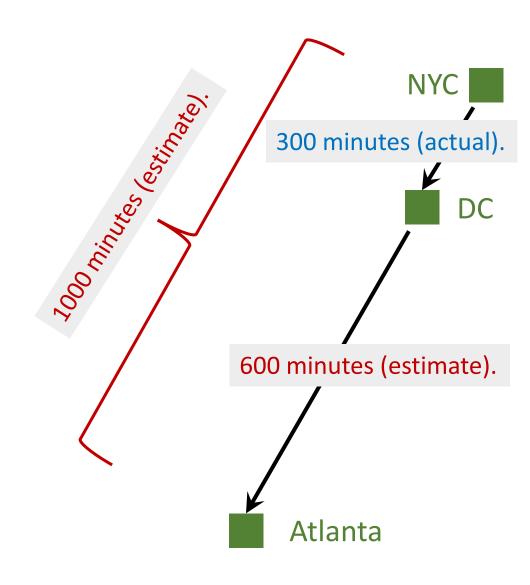
## Why does TD learning work?

- Model's estimates:
  - NYC to Atlanta: 1000 minutes.
  - DC to Atlanta: 600 minutes.
  - → NYC to DC: 400 minutes.



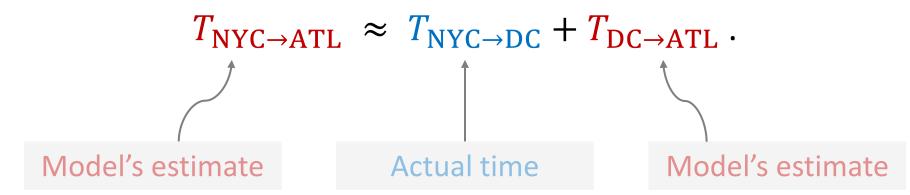
## Why does TD learning work?

- Model's estimates:
  - NYC to Atlanta: 1000 minutes.
  - DC to Atlanta: 600 minutes.
  - → NYC to DC: 400 minutes.
- Ground truth:
  - NYC to DC: 300 minutes.
- TD error:  $\delta = 400 300 = 100$

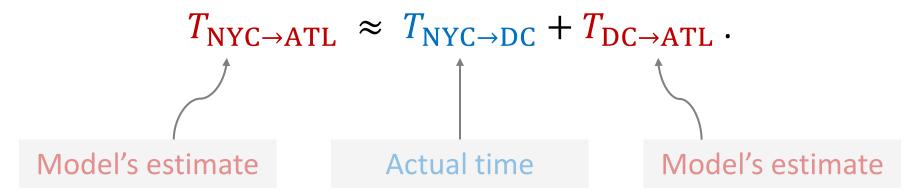


## TD Learning for DQN

• In the "driving time" example, we have the equation:



• In the "driving time" example, we have the equation:



• In deep reinforcement learning:

$$Q^*(s_t, a_t) \approx r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a).$$

Identity: 
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

#### **TD learning for DQN:**

- DQN's output,  $Q(s_t, a_t; \mathbf{w})$ , is an estimate of  $U_t$ .
- DQN's output,  $Q(s_{t+1}, a_{t+1}; \mathbf{w})$ , is an estimate of  $U_{t+1}$ .

• Thus, 
$$Q(s_t, a_t; \mathbf{w}) = \mathbb{E}\left[r_t + \gamma \cdot \max_a Q(S_{t+1}, a; \mathbf{w})\right].$$
 estimate of  $U_t$ 

Identity:  $U_t = R_t + \gamma \cdot U_{t+1}$ .

#### **TD learning for DQN:**

- DQN's output,  $Q(s_t, a_t; \mathbf{w})$ , is an estimate of  $U_t$ .
- DQN's output,  $Q(s_{t+1}, a_{t+1}; \mathbf{w})$ , is an estimate of  $U_{t+1}$ .
- Thus,  $Q(s_t, a_t; \mathbf{w}) \approx r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w}).$ Prediction TD target

### Train DQN using TD learning

- Prediction:  $Q(s_t, a_t; \mathbf{w}_t)$ .
- TD target:

$$y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t).$$

## Train DQN using TD learning

- Prediction:  $Q(s_t, a_t; \mathbf{w}_t)$ .
- TD target:

$$y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t).$$

- Loss:  $L_t = \frac{1}{2} [Q(s_t, a_t; \mathbf{w}) y_t]^2$ .
- Gradient descent:  $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L_t}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$ .

## Explore the Environment

#### • ε-greedy policy:

- With probability  $\varepsilon$ , the agent chooses a random action (exploration).
- With probability  $1 \varepsilon$ , the agent chooses the action that has the highest predicted Q-value (exploitation).
- **Decaying ε:** Often, DQN uses an **annealing strategy** where ε starts high (favoring exploration) and gradually decreases over time (favoring exploitation as the agent learns more).

# **Summary**

#### **Algorithm:** One iteration of TD learning.

- 1. Observe state  $S_t = S_t$  and perform action  $A_t = a_t$ .
- 2. Predict the value:  $q_t = Q(s_t, a_t; \mathbf{w}_t)$ .
- 3. Differentiate the value network:  $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \Big|_{\mathbf{w} = \mathbf{w}_t}$ .

#### Algorithm: One iteration of TD learning.

- 1. Observe state  $S_t = S_t$  and perform action  $A_t = a_t$ .
- 2. Predict the value:  $q_t = Q(s_t, a_t; \mathbf{w}_t)$ .
- 3. Differentiate the value network:  $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a}_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$ .
- 4. Environment provides new state  $s_{t+1}$  and reward  $r_t$ .
- 5. Compute TD target:  $y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$ .

#### Algorithm: One iteration of TD learning.

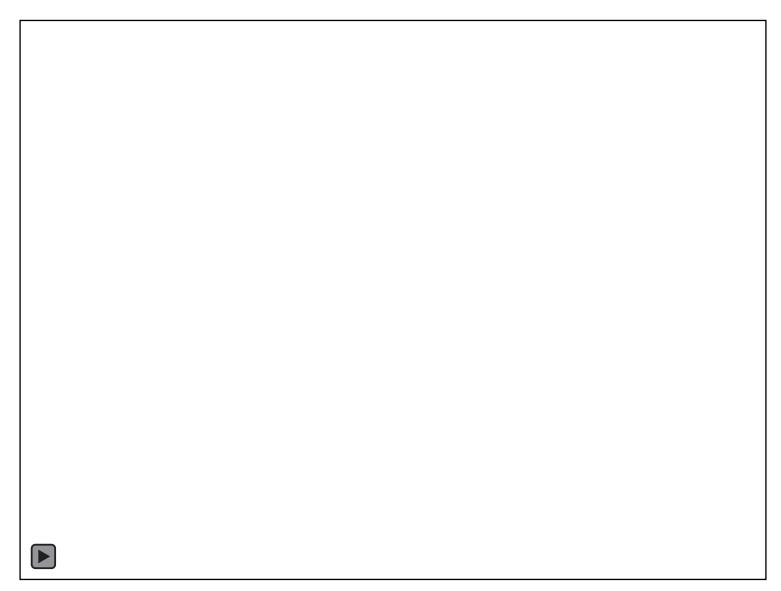
- 1. Observe state  $S_t = S_t$  and perform action  $A_t = a_t$ .
- 2. Predict the value:  $q_t = Q(s_t, a_t; \mathbf{w}_t)$ .
- 3. Differentiate the value network:  $\mathbf{d}_t = \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$ .
- 4. Environment provides new state  $s_{t+1}$  and reward  $r_t$ .
- 5. Compute TD target:  $\mathbf{y_t} = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w_t})$ .
- 6. Gradient descent:  $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot (\mathbf{q}_t \mathbf{y}_t) \cdot \mathbf{d}_t$ .

## Process of Q Learning

- Initialize network  $Q(s, a; \mathbf{w})$
- Repeat:
  - Observe the current state  $s_t$
  - Choose an action ( $\epsilon$ -greedy strategy): select action  $a_t$  using an exploration policy:
    - With probability  $\varepsilon$ , choose a random action (exploration).
    - With probability  $1 \varepsilon$ , choose the action with the highest  $Q(s_t, a_t; \mathbf{w})$  (exploitation).
  - Take the action and observe the reward
  - Update  $Q(s, a; \mathbf{w})$  using TD learning
- After training, the optimal policy is:

$$\pi^*(s) \coloneqq \arg\max_{a} Q(s, a; \mathbf{w})$$

## Play Breakout using DQN



## Thank you!