Adapted from slides by Shusen Wang at Stevens Institute of Technology

http://wangshusen.github.io/

Policy Function Approximation

Policy Function $\pi(a|s)$

- Policy function $\pi(a|s)$ is a probability density function (PDF).
- It takes state s as input.
- It output the probabilities for all the actions, e.g.,

$$\pi(\text{left}|s) = 0.2,$$
 $\pi(\text{right}|s) = 0.1,$
 $\pi(\text{up}|s) = 0.7.$

• Randomly sample action α random drawn from the distribution.

Policy Network $\pi(a|s;\theta)$

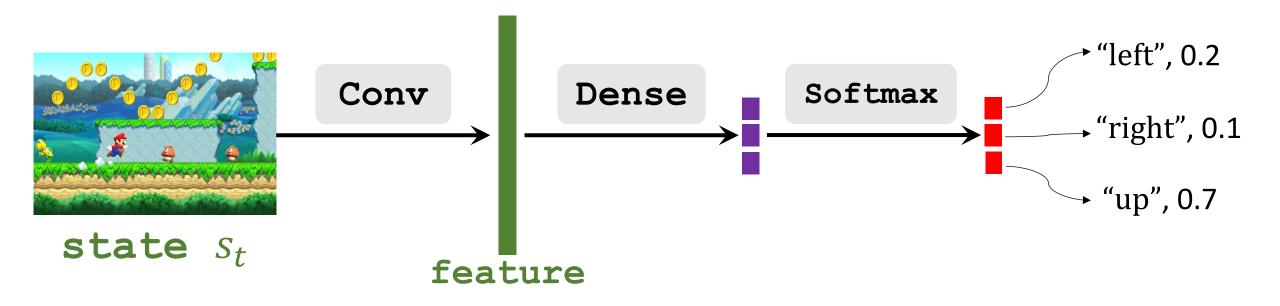
Policy network: Use a neural net to approximate $\pi(a|s)$.

- Use policy network $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Policy Network $\pi(a|s;\theta)$

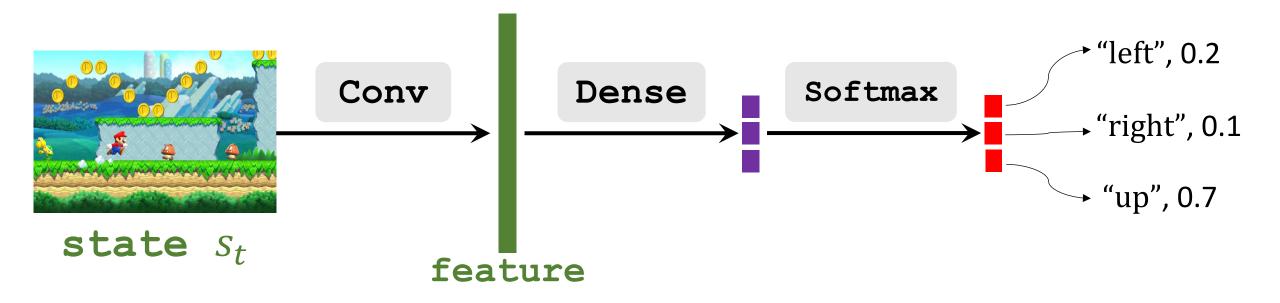
Policy network: Use a neural net to approximate $\pi(a|s)$.

- Use policy network $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.



Policy Network $\pi(a|s;\theta)$

- $\sum_{a \in \mathcal{A}} \pi(a|s; \theta) = 1.$
- Here, $\mathcal{A} = \{\text{"left", "right", "up"}\}\$ is the set all actions.
- That is why we use softmax activation.



State-Value Function Approximation

Action-Value Function

Definition: Discounted return.

```
• U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots
```

- The return depends on actions $A_t, A_{t+1}, A_{t+2}, \cdots$ and states $S_t, S_{t+1}, S_{t+2}, \cdots$
- Actions are random: P[A = a | S = s] = π(a|s). (Policy function.)
 States are random: P[S' = s'|S = s, A = a] = p(s'|s, a). (State transition.)

Action-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

The expectation is taken w.r.t.

actions
$$A_{t+1}, A_{t+2}, A_{t+3}, \cdots$$

and states $S_{t+1}, S_{t+2}, S_{t+3}, \cdots$

State-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\stackrel{A}{t}}[Q_{\pi}(s_t, A)]$$

Integrate out action $A \sim \pi(\cdot | s_t)$.

State-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}} \left[Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Integrate out action $A \sim \pi(\cdot | s_t)$.

Definition: State-value function.

• $V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}\left[Q_{\pi}(s_t, \mathbf{A})\right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$

Approximate state-value function.

- Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t; \theta)$.
- Approximate value function $V_{\pi}(s_t)$ by:

$$V(s_t; \mathbf{\theta}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t; \mathbf{\theta}) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy-based learning: Learn θ that maximizes $J(\theta) = \mathbb{E}_{S}[V(S; \theta)]$.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy-based learning: Learn θ that maximizes $J(\theta) = \mathbb{E}_{S}[V(S; \theta)]$.

How to improve θ ? Policy gradient ascent!

• Update policy by: $\mathbf{\theta} \leftarrow \mathbf{\theta} + \eta \cdot \nabla J(\mathbf{\theta})$.

Policy gradient

Reference

• Sutton and others: Policy gradient methods for reinforcement learning with function approximation. In NIPS, 2000.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s; \mathbf{\theta})}{\partial \mathbf{\theta}}$$

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{\mathbf{a}} \frac{\partial \pi(\mathbf{a}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a})$$

Policy Gradient

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{\mathbf{a}} \frac{\partial \pi(\mathbf{a}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a})$$

Policy Gradient

Note: This derivation is over-simplified and not rigorous.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.
• $\Rightarrow \pi(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$.

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \underbrace{\frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)}_{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \mathbb{E}_{A} \left[\underbrace{\frac{\partial \log \pi(A|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A)}_{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

The expectation is taken w.r.t. the random variable $A \sim \pi(\cdot | s; \theta)$.

Policy gradient:

$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{a \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(a|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,a) \right].$$

$$\nabla J(\mathbf{\theta}) = \mathbb{E}_{(\mathbf{s},a) \sim \pi(\cdot;\mathbf{\theta})} [\nabla \log \pi(a|\mathbf{s},\mathbf{\theta}) \cdot Q_{\pi}(\mathbf{s},a)]$$

Calculate Policy Gradient

Policy Gradient: $\nabla J(\mathbf{\theta}) = \mathbb{E}_{(s,a) \sim \pi(\cdot;\mathbf{\theta})} [\nabla \log \pi(a|s,\mathbf{\theta}) \cdot Q_{\pi}(s,a)].$

Calculate Policy Gradient

Policy Gradient: $\nabla J(\mathbf{\theta}) = \mathbb{E}_{(s,a) \sim \pi(\cdot;\mathbf{\theta})} [\nabla \log \pi(a|s,\mathbf{\theta}) \cdot Q_{\pi}(s,a)].$

- 1. Randomly sample trajectories (s_t, a_t) according to $\pi(\cdot; \theta)$.
- 2. Calculate $\nabla \bar{J}(\theta)$ using (s, a) pairs from the trajectories.
- 3. Update parameters by $\mathbf{\theta} \leftarrow \mathbf{\theta} + \eta \nabla \bar{J}(\mathbf{\theta})$.

- 1. Randomly sample trajectories (s_t, a_t) according to $\pi(\cdot; \theta)$.
- 2. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate).
- 3. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 4. (Approximate) policy gradient: $\nabla \overline{J}(\boldsymbol{\theta})$.
- 5. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \eta \cdot \nabla \bar{J}(\mathbf{\theta})$.

- 1. Randomly sample trajectories (s_t, a_t) according to $\pi(\cdot; \theta)$.
- 2. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?
- 3. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} |_{\theta=\theta_t}$.
- 4. (Approximate) policy gradient: $\nabla \bar{J}(\theta)$.
- 5. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \eta \cdot \nabla \bar{J}(\mathbf{\theta})$.

Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 1: REINFORCE.

Play the game to the end and generate the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_T, a_T, r_T.$$

- Compute the discounted return $u_t = \sum_{k=t}^T \gamma^{k-t} r_k$, for all t.
- Since $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t]$, we can use u_t to approximate $Q_{\pi}(s_t, a_t)$.
- \rightarrow Use $q_t = u_t$.

Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 2: Approximate Q_{π} using a neural network.

• This leads to the actor-critic method.

Summary

Policy-Based Learning

- If a good policy function π is known, the agent can be controlled by the policy: randomly sample $a_t \sim \pi(\cdot | s_t)$.
- Approximate policy function $\pi(a|s)$ by policy network $\pi(a|s;\theta)$.
- Learn the policy network by policy gradient algorithm.
- Policy gradient algorithm learn θ that maximizes $\mathbb{E}_{S}[V(S; \theta)]$.