Preliminaries

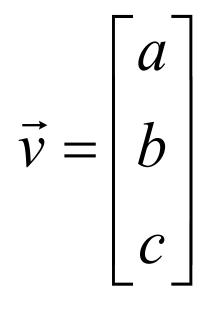
Outline

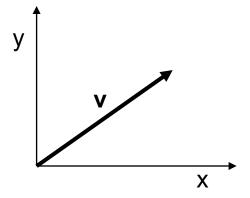
- Linear Algebra
- Calculus
- Probability

Vector

Think of a vector as a <u>directed line</u>
 segment in N-dimensions! (has "length"
 and "direction")

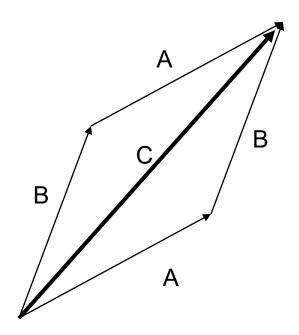
- Basic idea: convert geometry in higher dimensions into algebra!
 - Once you define a "nice" <u>basis</u> along each dimension: x-, y-, z-axis ...
 - Vector becomes a N x 1 matrix!
- 1-dimensional array





Vector Addition: A+B

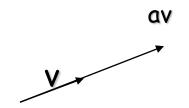
$$\mathbf{A} + \mathbf{B} = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$



A+B = C (use the head-to-tail method to combine vectors)

Scalar Product: av

$$a\mathbf{v} = a(x_1, x_2) = (ax_1, ax_2)$$



Change only the length ("scaling"), but keep <u>direction fixed</u>.

Sneak peek: matrix operation (**Av**) can change *length*, *direction and also dimensionality*!

Vectors: Dot/Inner Product

$$A \cdot B = A^T B = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = ad + be + cf$$
 Think of the dot product as a matrix multiplication

$$||A||^2 = A^T A = aa + bb + cc$$

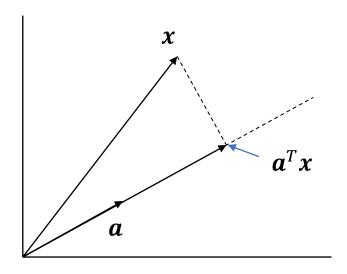
The magnitude is the dot product of a vector with itself

$$A \cdot B = ||A|| \ ||B|| \cos(\theta)$$

The dot product is also related to the angle between the two vectors

$$A \cdot B = 0 \iff A \perp B$$

Projection: Using Inner Products



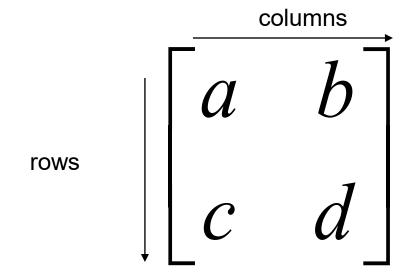
Projection of x along the direction a (||a|| = 1)

$$\mathbf{p} = \mathbf{a} \ (\mathbf{a}^{\mathrm{T}} \mathbf{x})$$

 $||\mathbf{a}|| = \mathbf{a}^{\mathrm{T}} \mathbf{a} = 1$

Matrix

- A matrix is a set of elements, organized into rows and columns
- $N \times M$ matrix
- 2-dimensional array
- Transpose



Elementwise Matrix Operations

Addition, Subtraction, Multiplication: creating new matrices (or functions)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a - e & b - f \\ c - g & d - h \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae & bf \\ cg & dh \end{bmatrix}$$

Matrix Times Matrix

$$L = M \cdot N$$

$$\begin{bmatrix} l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \\ l_{31} & l_{32} & l_{33} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \cdot \begin{bmatrix} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & n_{32} & n_{33} \end{bmatrix}$$

$$l_{12} = m_{11}n_{12} + m_{12}n_{22} + m_{13}n_{32}$$

Multiplication

• Is AB = BA? Maybe, but maybe not!

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & \dots \\ \dots & \dots \end{bmatrix} \quad \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ea + fc & \dots \\ \dots & \dots \end{bmatrix}$$

- Matrix multiplication AB: apply transformation B first, and then again transform using A!
- Heads up: multiplication is NOT commutative!

Matrix operating on vectors

- Matrix is like a <u>function</u> that <u>transforms the vectors on a plane</u>
- Matrix operating on a general point => transforms x- and y-components
- System of linear equations: matrix is just the bunch of coeffs!

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Matrices: Scaling, Rotation



Inverse of a Matrix

• Identity matrix:

$$AI = A$$

- Inverse exists only for <u>square</u> <u>matrices</u> that are <u>non-singular</u>
- Some matrices have an inverse, such that:

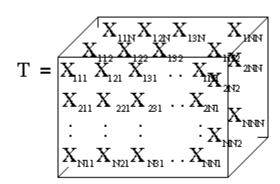
$$AA^{-1} = I$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Tensors

- A generic way of describing N-dimensional arrays
 - Vector: first-order tensor
 - Matrix: second-order tensor

A three-order tensor



Derivatives and Differentiation

• For a function y = f(x), the derivative of f is defined as

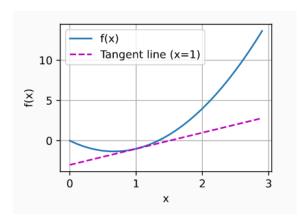
$$f'(x) = \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If f'(a) exists, f is said to be differentiable at a, where the derivative is f'(a)

• Example: $f(x) = 3x^2 - 4x$

• f'(a) can also be interpreted as the slope of the tangent line to the curve of f at

point a



Partial Derivatives

- Extend the ideas of differentiation to multivariate functions.
- Let $y = f(x_1, x_2, ..., x_n)$ be a function with n variables. The partial derivative of y with respect to its ith parameter x_i is

$$\frac{\partial y}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}$$

- To calculate $\frac{\partial y}{\partial x_i}$, we can simply treat $x_1, \dots, x_i 1, x_i + 1, \dots, x_n$ as constants and calculate the derivative of y with respect to x_i .
- Example: $f(x_1, x_2) = x_1^2 + x_2^2 + x_1x_2$

Gradients

• Let $\mathbf{x} = [x_1, x_2, ..., x_n]$, the gradient of function $f(\mathbf{x})$ w.r.t. \mathbf{x} is $\nabla f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, ..., \frac{\partial f(\mathbf{x})}{\partial x_n}\right]$

The gradient field
$$\langle 2x-4, 2y+2 \rangle$$
 of the function $f = x^2 - 4x + y^2 + 2y$.

Chain Rule

- Help us to compute derivatives for composite functions.
- Three variables: z, y, x.

Three variables:
$$z, y, x$$
.
• $z = f(y), y = g(x)$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = f'(g(x))g'(x)$$
Extend to partial derivatives

Extend to partial derivatives

•
$$z = f(y_1, y_2, ..., y_m), y_i = g_i(x_1, x_2, ..., x_n)$$

$$\frac{\partial z}{\partial x_j} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x_j} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x_j} + \dots + \frac{\partial z}{\partial y_m} \frac{\partial y_m}{\partial x_j}$$

Random Variables

- A variable whose value is not deterministic.
- A <u>discrete</u> random variable X takes value from a sample space (e.g., $S = \{1,2,3,4,5,6\}$). The distribution P(X) tells us the probability that X takes any value.
- A continues random variable X takes value from a continuous domain (e.g., \mathbb{R}). The probability density function f(x) tells us the likelihood that we see a value. The cumulative distribution function P(x) tells us the probability that X will take a value less than or equal to x.

Bayes' Theorem

- Joint probability P(A = a, B = b): The probability that A = a and B = b happen simultaneously.
- Conditional probability $P(B=b|A=a)=\frac{P(A=a,B=b)}{P(A=a)}$: The probability of B=b, provided that A=a has occurred.
- Marginalization: $P(B) = \sum_{A} P(A, B)$
- Bayes' theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Expectation and Variance

• The average of the random variable X is quantified by its expectation:

$$E[X] = \sum_{x} x P(X = x)$$

• The expectation of function f(x):

$$E_{x \sim P(X)}[f(x)] = \sum_{x} f(x)P(x)$$

• How much the random variable *X* deviates from its expectation is quantified by the variance:

$$Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$