
Preliminaries



Outline

• Linear Algebra
• Calculus
• Probability



Vector
• Think of a vector as a directed line 

segment in N-dimensions! (has “length” 
and “direction”)

• Basic idea: convert geometry in higher 
dimensions into algebra!

• Once you define a “nice” basis along 
each dimension: x-, y-, z-axis …  

• Vector becomes a N x 1 matrix!

• 1-dimensional array
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Vector Addition: A+B
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A+B = C
(use the head-to-tail method 

to combine vectors)
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Scalar Product: av
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Change only the length (“scaling”), but keep direction fixed.

Sneak peek: matrix operation (Av) can change length, 
direction and also dimensionality!



Vectors: Dot/Inner Product
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Think of the dot product as 
a matrix multiplication

The magnitude is the dot 
product of a vector with itself

The dot product is also related to the 
angle between the two vectors

𝐴𝐴 ⋅ 𝐵𝐵 = 0 ⟺  𝐴𝐴 ⊥ 𝐵𝐵



p = a (aTx)
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Projection: Using Inner Products

𝒙𝒙

𝒂𝒂

𝒂𝒂𝑇𝑇𝒙𝒙

Projection of 𝒙𝒙 along the direction 𝒂𝒂 ( 𝒂𝒂 = 1)



Matrix

• A matrix is a set of elements, organized into rows and columns
• 𝑁𝑁 × 𝑀𝑀 matrix
• 2-dimensional array
• Transpose
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Elementwise Matrix Operations
• Addition, Subtraction, Multiplication: creating new matrices (or functions)

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑 + 𝑒𝑒 𝑓𝑓

𝑔𝑔 ℎ = 𝑎𝑎 + 𝑒𝑒 𝑏𝑏 + 𝑓𝑓
𝑐𝑐 + 𝑔𝑔 𝑑𝑑 + ℎ

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑 − 𝑒𝑒 𝑓𝑓

𝑔𝑔 ℎ = 𝑎𝑎 − 𝑒𝑒 𝑏𝑏 − 𝑓𝑓
𝑐𝑐 − 𝑔𝑔 𝑑𝑑 − ℎ

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑

𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ = 𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏

𝑐𝑐𝑐𝑐 𝑑𝑑𝑑



Matrix Times Matrix
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Multiplication
• Is AB = BA?  Maybe, but maybe not!

• Matrix multiplication AB: apply transformation B first, and then 
again transform using A!

• Heads up: multiplication is NOT commutative!
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Matrix operating on vectors
• Matrix is like a function that transforms the vectors on a plane
• Matrix operating on a general point => transforms x- and y-components
• System of linear equations: matrix is just the bunch of coeffs !  

• x’ = ax + by 
• y’ = cx + dy 
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Matrices: Scaling, Rotation

[cosθ, sinθ]T

[1,0]T

[0,1]T

θ

[-sinθ, cosθ]T

cosθ  -sinθ
 sinθ    cosθ 

[1,0]T

[0,1]T

r1    0
   0    r2 

[r1,0]T

[0,r2]T

scaling

rotation



Inverse of a Matrix
• Identity matrix: 

AI = A
• Inverse exists only for square 

matrices that are non-singular
• Some matrices have an inverse, 

such that:
AA-1 = I
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Tensors

• A generic way of describing N-dimensional arrays
• Vector: first-order tensor
• Matrix: second-order tensor

A three-order tensor



Derivatives and Differentiation

• For a function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), the derivative of 𝑓𝑓 is defined as 

𝑓𝑓′ 𝑥𝑥 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= lim
ℎ→0

𝑓𝑓 𝑥𝑥 + ℎ − 𝑓𝑓(𝑥𝑥)
ℎ

If 𝑓𝑓𝑓(𝑎𝑎) exists, 𝑓𝑓 is said to be differentiable at 𝑎𝑎, where the derivative is 𝑓𝑓𝑓(𝑎𝑎) 
• Example: 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 − 4𝑥𝑥

• 𝑓𝑓𝑓(𝑎𝑎) can also be interpreted as the slope of the tangent line to the curve of 𝑓𝑓 at 
point 𝑎𝑎



Partial Derivatives

• Extend the ideas of differentiation to multivariate functions.
• Let  𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) be a function with 𝑛𝑛 variables. The partial derivative of 
𝑦𝑦 with respect to its 𝑖𝑖th parameter 𝑥𝑥𝑖𝑖  is

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥𝑖𝑖 

= lim
ℎ→0

𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 + ℎ, … , 𝑥𝑥𝑛𝑛 − 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑛𝑛
ℎ

• To calculate 𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥𝑖𝑖 

, we can simply treat 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 − 1, 𝑥𝑥𝑖𝑖 + 1, … , 𝑥𝑥𝑛𝑛 as constants and 
calculate the derivative of 𝑦𝑦 with respect to 𝑥𝑥𝑖𝑖.

• Example: 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥1𝑥𝑥2



Gradients

• Let 𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛], the gradient of function 𝑓𝑓(𝒙𝒙) w.r.t. 𝒙𝒙 is

∇𝑓𝑓 𝒙𝒙 =
𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝑥𝑥1

,
𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝑥𝑥2

, … ,
𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑛𝑛



Chain Rule 

• Help us to compute derivatives for composite functions.
• Three variables: 𝑧𝑧,𝑦𝑦, 𝑥𝑥. 

• 𝑧𝑧 = 𝑓𝑓 𝑦𝑦 , 𝑦𝑦 = 𝑔𝑔(𝑥𝑥)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓′ 𝑔𝑔(𝑥𝑥) 𝑔𝑔𝑔(𝑥𝑥)

• Extend to partial derivatives
• 𝑧𝑧 = 𝑓𝑓(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑚𝑚), 𝑦𝑦𝑖𝑖 = 𝑔𝑔𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑦𝑦1
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑦𝑦2
𝜕𝜕𝑥𝑥𝑗𝑗

+ ⋯+
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦𝑚𝑚

𝜕𝜕𝑦𝑦𝑚𝑚
𝜕𝜕𝑥𝑥𝑗𝑗



Random Variables

• A variable whose value is not deterministic. 
• A discrete random variable 𝑋𝑋 takes value from a sample space (e.g., 
𝑆𝑆 = {1,2,3,4,5,6}). The distribution 𝑃𝑃(𝑋𝑋) tells us the probability that 
𝑋𝑋 takes any value.

• A continues random variable 𝑋𝑋 takes value from a continuous domain 
(e.g., ℝ). The probability density function 𝑓𝑓(𝑥𝑥) tells us the likelihood 
that we see a value. The cumulative distribution function 𝑃𝑃(𝑥𝑥) tells us 
the probability that 𝑋𝑋 will take a value less than or equal to 𝑥𝑥.



Bayes’ Theorem

• Joint probability 𝑃𝑃(𝐴𝐴 = 𝑎𝑎,𝐵𝐵 = 𝑏𝑏): The probability that 𝐴𝐴 = 𝑎𝑎 and 
𝐵𝐵 = 𝑏𝑏 happen simultaneously.

• Conditional probability 𝑃𝑃(𝐵𝐵 = 𝑏𝑏|𝐴𝐴 = 𝑎𝑎) = 𝑃𝑃(𝐴𝐴=𝑎𝑎,𝐵𝐵=𝑏𝑏)
𝑃𝑃(𝐴𝐴=𝑎𝑎)

: The 
probability of 𝐵𝐵 = 𝑏𝑏, provided that 𝐴𝐴 = 𝑎𝑎 has occurred.

• Marginalization: 𝑃𝑃 𝐵𝐵 = ∑𝐴𝐴𝑃𝑃(𝐴𝐴,𝐵𝐵)
• Bayes’ theorem:

𝑃𝑃 𝐴𝐴 𝐵𝐵 =
𝑃𝑃 𝐵𝐵 𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)



Expectation and Variance

• The average of the random variable 𝑋𝑋 is quantified by its expectation:

𝐸𝐸 𝑋𝑋 = �
𝑥𝑥

𝑥𝑥𝑥𝑥(𝑋𝑋 = 𝑥𝑥)

• The expectation of function 𝑓𝑓(𝑥𝑥):

𝐸𝐸𝑥𝑥~𝑃𝑃(𝑋𝑋) 𝑓𝑓 𝑥𝑥 = �
𝑥𝑥

𝑓𝑓 𝑥𝑥 𝑃𝑃(𝑥𝑥)

• How much the random variable 𝑋𝑋 deviates from its expectation is 
quantified by the variance:

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2 = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2
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