Nearest Neighbors




Supervised learning

* Would like to do prediction:

estimate a function f(x) so that y = f(x) Hope that the same f(x)

also works on unseen X’, Y’

* Where y can be:
* Real number: Regression
e Categorical: Classification

e Data is labeled:

* Have many pairs {(x, y)}
* X...vector of binary, categorical, real valued features
e y..class: {+1, -1}, or a real number
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Cross Validation

* To evaluate how the model performs on unseen data.
* Process: v
 Randomly partition dataset into k equal-sized subsamples.
* Retain 1 subsample as test set, use k-1 as training set. _.

YI

* Repeat k times, each subsample is test set once.
* Average results from the k folds to get a single estimation. Training and test set




Nearest neighbor

* Keep the whole training dataset: {(x, y)}

* A guery example (vector) x comes

* Find closest example(s) x '

* Predict y

* Works for both regression and classification



Regression; Scatter plots
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« Suggests a relationship between x and y
« Regression: given new observed xMW, estimate y("ew)



Nearest neighbor regression
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“Predictor”:

Given new features:
Find nearest example
Return its value




Nearest neighbor regression
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 Find training data x( closest to x(ew); predict y/
* Defines an (implict) function f(x)
* “Form” is piecewise constant



Nearest neighbor classifier

“Predictor’ :
Given new features:
Find nearest example
1 Return its value
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Nearest neighbor classifier

“Predictor”:

Given new features:
Find nearest example

1 Return its value

“Closest” training x?
Typically Euclidean distance:

d(x.z") = \/Z?(‘L? — x)?

X -



Nearest neighbor classification

Nearest Nbr:
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Nearest neighbor classifier




Nearest neighbor classifier

All points where we decide 1

DecisioyBoundary

All points where we decide 0

X -




Nearest neighbor classification

* 3D decision boundary

* In general: Nearest-neighbor classifier produces piecewise linear decision
boundaries



k-nearest neighbors (kNN)

* Find the k-nearest neighbors to x (") in the data
* i.e., rank the feature vectors according to Euclidean distance
e select the k vectors which have smallest distance to x(™e%)

* Regression
* Usually just average the y-values of the k closest training examples

e Classification
* ranking yields k feature vectors and a set of k class labels
 pick the class label which is most common in this set (“vote”)

* Note: for two-class problems, if kisodd (k = 1, 3,5, ...) there will never be
any “ties”



k-nearest neighbors (k-NN)

* 1-nearest neighbor is sensitive to
noise or miss-labeled data

* Solution: smooth by having k
nearest neighbors
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shaded area will be classified
correctly as the red class



k = Number of Nearest Neighbors
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k-nearest neighbors
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* Tradeoffs in choosing k
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* Small k .

* Good at capturing fine-grained patterns i By

* May overfit, i.e. be sensitive to random idiosyncrasies in the training data
e Large k

* Makes stable predictions by averaging over lots of examples
* May underfit, i.e. fail to capture important regularities

 Rule of thumb: k < \/n, where n is the number of training examples



k-nearest neighbors




k-nearest neighbors

e k is an example of a hyperparameter, something we can’t fit as part of the learning
algorithm itself

* We can tune hyperparameters using a validation set:

— validation
training set A test set
train w/ k =1 —— err=17.3
X
trainw/ k=3 —— err=1.1 | testerr=1.2
V4
train w/ k = 10 — err = 10.5

X

* The test set is used only at the very end, to measure the generalization performance of
the final configuration.



Pitfalls: the curse of dimensionality

* Low-dimensional visualizations are misleading! In high dimensions,
“most” points are far apart.

* In high dimensions, “most” points are approximately the same
distance.
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* As the dimensions grow, the amount of data we need to generalize
accurately grows exponentially.



Pitfalls: computational cost

 Number of computations at training time: O (lazy learning)

 Number of computations at test time, per query (naive algorithm)
* Calculate m-dimensional Euclidean distances with n data points: O (mn)
* Sort the distances: O(n logn)

* This must be done for each query, which is very expensive by the
standards of a learning algorithm!

* Need to store the entire dataset in memory (non-parametric)!

* Tons of work has gone into algorithms and data structures for
efficient nearest neighbors with high dimensions and/or large
datasets.



Distance-weighted k-NN

* Might want to weight nearer neighbors more heavily
n w(i)y(i)
fxmew)) = =2——
o™ :
(D) y(new)
where , w<i>:exp(—d(x ,I:W ))

0@ =

d(x(new)’ x(i))z
and d(xMmew), x(i))z is the distance between x (W) and x

* Note now it makes sense to use all training examples instead of k



Summary

K-nearest neighbor models
» Classification (vote)
 Regression (average or weighted average)

Piecewise linear decision boundary
* How to calculate

Simple algorithm that does all its work at test time — in a sense, no learning!

Test data and overfitting
* Model “complexity” for knn
* Use validation data to estimate test error rates & select k
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