Nearest Neighbors

Adopted from slides by Roger Grosse, Alex Ihler

Supervised learning

Would like to do prediction:

```
estimate a function f(x) so that y = f(x)
```

Hope that the same f(x) also works on unseen X', Y'

- Where y can be:
 - Real number: Regression
 - Categorical: Classification
- Data is labeled:
 - Have many pairs {(x, y)}
 - x ... vector of binary, categorical, real valued features
 - **y** ... class: {+1, -1}, or a real number

Cross Validation

- To evaluate how the model performs on unseen data.
- Process:
 - Randomly partition dataset into k equal-sized subsamples.
 - Retain 1 subsample as test set, use k-1 as training set.
 - Repeat k times, each subsample is test set once.
 - Average results from the k folds to get a single estimation.

Nearest neighbor

- Keep the whole training dataset: $\{(x, y)\}$
- A query example (vector) *x* comes
- Find closest example(s) x³
- Predict \widehat{y}
- Works for both regression and classification

Regression; Scatter plots

- Suggests a relationship between x and y
- Regression: given new observed $x^{(new)}$, estimate $y^{(new)}$

Nearest neighbor regression

"Predictor":
Given new features:
Find nearest example

Return its value

• Find training data $x^{(i)}$ closest to $x^{(new)}$; predict $y^{(i)}$

Nearest neighbor regression

- Find training data $x^{(i)}$ closest to $x^{(new)}$; predict $y^{(i)}$
- Defines an (implict) function f(x)
- "Form" is piecewise constant

"Predictor":

Given new features: Find nearest example Return its value

Nearest neighbor classifier

Nearest neighbor classifier

Nearest neighbor classification

Nearest neighbor classifier

Nearest neighbor classifier

Nearest neighbor classification

• 3D decision boundary

• In general: Nearest-neighbor classifier produces piecewise linear decision boundaries

k-nearest neighbors (kNN)

- Find the k-nearest neighbors to $x^{(new)}$ in the data
 - i.e., rank the feature vectors according to Euclidean distance
 - select the k vectors which have smallest distance to $x^{(new)}$
- Regression
 - Usually just average the y-values of the k closest training examples
- Classification
 - ranking yields k feature vectors and a set of k class labels
 - pick the class label which is most common in this set ("vote")
 - Note: for two-class problems, if k is odd ($k=1,3,5,\ldots$) there will never be any "ties"

k-nearest neighbors (k-NN)

- 1-nearest neighbor is sensitive to noise or miss-labeled data
- Solution: smooth by having k nearest neighbors

k - Number of Nearest Neighbor

k-nearest neighbors

- Tradeoffs in choosing k
 - Small k
 - Good at capturing fine-grained patterns
 - May overfit, i.e. be sensitive to random idiosyncrasies in the training data
 - Large *k*
 - Makes stable predictions by averaging over lots of examples
 - May underfit, i.e. fail to capture important regularities
 - Rule of thumb: $k < \sqrt{n}$, where n is the number of training examples

k-nearest neighbors

$$k = 15$$

k-nearest neighbors

- ullet is an example of a hyperparameter, something we can't fit as part of the learning algorithm itself
- We can tune hyperparameters using a validation set:

• The test set is used only at the very end, to measure the generalization performance of the final configuration.

Pitfalls: the curse of dimensionality

- Low-dimensional visualizations are misleading! In high dimensions, "most" points are far apart.
- In high dimensions, "most" points are approximately the same distance.

• As the dimensions grow, the amount of data we need to generalize accurately grows exponentially.

Pitfalls: computational cost

- Number of computations at training time: 0 (lazy learning)
- Number of computations at test time, per query (naïve algorithm)
 - Calculate m-dimensional Euclidean distances with n data points: O(mn)
 - Sort the distances: $O(n \log n)$
- This must be done for each query, which is very expensive by the standards of a learning algorithm!
- Need to store the entire dataset in memory (non-parametric)!
- Tons of work has gone into algorithms and data structures for efficient nearest neighbors with high dimensions and/or large datasets.

Distance-weighted k-NN

Might want to weight nearer neighbors more heavily

$$f(x^{(new)}) = \frac{\sum_{i=1}^{n} \omega^{(i)} y^{(i)}}{\sum_{i=1}^{n} \omega^{(i)}}$$

where

$$\omega^{(i)} = \frac{1}{d(x^{(new)}, x^{(i)})^2}$$

$$w^{(i)} = \exp\left(-\frac{d(x^{(i)}, x^{(new)})^2}{K_w}\right)$$

and $d(x^{(new)}, x^{(i)})^2$ is the distance between $x^{(new)}$ and $x^{(i)}$

ullet Note now it makes sense to use all training examples instead of k

Summary

- K-nearest neighbor models
 - Classification (vote)
 - Regression (average or weighted average)
- Piecewise linear decision boundary
 - How to calculate
- Simple algorithm that does all its work at test time in a sense, no learning!
- Test data and overfitting
 - Model "complexity" for knn
 - Use validation data to estimate test error rates & select k