
Nearest Neighbors
Adopted from slides by Roger Grosse, Alex Ihler

Supervised learning

• Would like to do prediction:
 estimate a function f(x) so that y = f(x)

• Where y can be:
• Real number: Regression
• Categorical: Classification

• Data is labeled:
• Have many pairs {(x, y)}

• x … vector of binary, categorical, real valued features
• y … class: {+1, -1}, or a real number

Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu 28/29/2023

Hope that the same f(x)
also works on unseen X’, Y’

Cross Validation

• To evaluate how the model performs on unseen data.
• Process:

• Randomly partition dataset into k equal-sized subsamples.
• Retain 1 subsample as test set, use k-1 as training set.
• Repeat k times, each subsample is test set once.
• Average results from the k folds to get a single estimation.

X Y

X’ Y’

Training and test set

Nearest neighbor

• Keep the whole training dataset: {(𝒙𝒙,𝒚𝒚)}
• A query example (vector) 𝒙𝒙 comes
• Find closest example(s) 𝒙𝒙 ∗

• Predict �𝒚𝒚
• Works for both regression and classification

Regression; Scatter plots

• Suggests a relationship between x and y
• Regression: given new observed x(new), estimate y(new)

0 10 20
0

20

40

Ta
rg

et
 y

Feature x

x(new)

y(new) =?

Nearest neighbor regression

• Find training data x(i) closest to x(new); predict y(i)

0 10 20
0

20

40

x(new)

y(new) =?
Ta

rg
et

 y

Feature x

“Predictor”:
Given new features:
 Find nearest example
 Return its value

Nearest neighbor regression

• Find training data x(i) closest to x(new); predict y(i)
• Defines an (implict) function f(x)
• “Form” is piecewise constant

“Predictor”:
Given new features:
 Find nearest example
 Return its value

0 10 20
0

20

40

Ta
rg

et
 y

Feature x

Nearest neighbor classifier

1

1

1

1

0

0

0

0

𝑋𝑋1 →

𝑋𝑋 2
→

?

“Predictor”:
Given new features:
 Find nearest example
 Return its value

Nearest neighbor classifier

1

1

1

1

0

0

0

0
?

“Predictor”:
Given new features:
 Find nearest example
 Return its value

“Closest” training x?
Typically Euclidean distance:

𝑋𝑋1 →

𝑋𝑋 2
→

Nearest neighbor classification

1

1

1

0

0
0

X1

X
2

Nearest Nbr:
Piecewise linear boundary

Class 0

Class 1

Nearest neighbor classifier

1

1

1

1

0

0

0

0

𝑋𝑋1 →

𝑋𝑋 2
→

?

Nearest neighbor classifier

1

1

1

1

0

0

0

0
?

All points where we decide 1

All points where we decide 0

Decision Boundary

𝑋𝑋1 →

𝑋𝑋 2
→

Nearest neighbor classification

• 3D decision boundary

• In general: Nearest-neighbor classifier produces piecewise linear decision
boundaries

𝑘𝑘-nearest neighbors (kNN)

• Find the 𝑘𝑘-nearest neighbors to 𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛) in the data
• i.e., rank the feature vectors according to Euclidean distance
• select the 𝑘𝑘 vectors which have smallest distance to 𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛)

• Regression
• Usually just average the 𝑦𝑦-values of the 𝑘𝑘 closest training examples

• Classification
• ranking yields 𝑘𝑘 feature vectors and a set of 𝑘𝑘 class labels
• pick the class label which is most common in this set (“vote”)
• Note: for two-class problems, if k is odd (𝑘𝑘 = 1, 3, 5, …) there will never be

any “ties”

𝑘𝑘-nearest neighbors (𝑘𝑘-NN)

• 1-nearest neighbor is sensitive to
noise or miss-labeled data

• Solution: smooth by having 𝑘𝑘
nearest neighbors

𝑘𝑘-nearest neighbors

• Tradeoffs in choosing 𝑘𝑘

• Small 𝑘𝑘
• Good at capturing fine-grained patterns
• May overfit, i.e. be sensitive to random idiosyncrasies in the training data

• Large 𝑘𝑘
• Makes stable predictions by averaging over lots of examples
• May underfit, i.e. fail to capture important regularities

• Rule of thumb: 𝑘𝑘 < 𝑛𝑛, where 𝑛𝑛 is the number of training examples

𝑘𝑘-nearest neighbors

𝑘𝑘 = 1 𝑘𝑘 = 15

𝑘𝑘-nearest neighbors

• 𝑘𝑘 is an example of a hyperparameter, something we can’t fit as part of the learning
algorithm itself

• We can tune hyperparameters using a validation set:

• The test set is used only at the very end, to measure the generalization performance of
the final configuration.

Pitfalls: the curse of dimensionality

• Low-dimensional visualizations are misleading! In high dimensions,
“most” points are far apart.

• In high dimensions, “most” points are approximately the same
distance.

• As the dimensions grow, the amount of data we need to generalize
accurately grows exponentially.

Pitfalls: computational cost

• Number of computations at training time: 0 (lazy learning)
• Number of computations at test time, per query (naïve algorithm)

• Calculate 𝑚𝑚-dimensional Euclidean distances with 𝑛𝑛 data points: 𝑂𝑂(𝑚𝑚𝑚𝑚)
• Sort the distances: 𝑂𝑂(𝑛𝑛 log𝑛𝑛)

• This must be done for each query, which is very expensive by the
standards of a learning algorithm!

• Need to store the entire dataset in memory (non-parametric)!
• Tons of work has gone into algorithms and data structures for

efficient nearest neighbors with high dimensions and/or large
datasets.

Distance-weighted 𝑘𝑘-NN

• Might want to weight nearer neighbors more heavily

𝑓𝑓 𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛) =
∑𝑖𝑖=1𝑛𝑛 𝜔𝜔(𝑖𝑖)𝑦𝑦(𝑖𝑖)

∑𝑖𝑖=1𝑛𝑛 𝜔𝜔(𝑖𝑖)

 where

𝜔𝜔(𝑖𝑖) =
1

𝑑𝑑 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑥𝑥 𝑖𝑖 2

 and 𝑑𝑑 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑥𝑥 𝑖𝑖 2
 is the distance between 𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛) and 𝑥𝑥 𝑖𝑖

• Note now it makes sense to use all training examples instead of 𝑘𝑘

𝒘𝒘(𝒊𝒊) = 𝐞𝐞𝐞𝐞𝐞𝐞(−
𝒅𝒅 𝒙𝒙 𝒊𝒊 ,𝒙𝒙(𝒏𝒏𝒏𝒏𝒏𝒏) 𝟐𝟐

𝑲𝑲𝒘𝒘
)

Summary

• K-nearest neighbor models
• Classification (vote)
• Regression (average or weighted average)

• Piecewise linear decision boundary
• How to calculate

• Simple algorithm that does all its work at test time — in a sense, no learning!

• Test data and overfitting
• Model “complexity” for knn
• Use validation data to estimate test error rates & select k

	Nearest Neighbors
	Supervised learning
	Cross Validation
	Nearest neighbor
	Regression; Scatter plots
	Nearest neighbor regression
	Nearest neighbor regression
	Nearest neighbor classifier
	Nearest neighbor classifier
	Nearest neighbor classification
	Nearest neighbor classifier
	Nearest neighbor classifier
	Nearest neighbor classification
	𝑘-nearest neighbors (kNN)
	𝑘-nearest neighbors (𝑘-NN)
	𝑘-nearest neighbors
	𝑘-nearest neighbors
	𝑘-nearest neighbors
	Pitfalls: the curse of dimensionality
	Pitfalls: computational cost
	Distance-weighted 𝑘-NN
	Summary

