Nearest Neighbors

Supervised learning

* Would like to do prediction:

estimate a function f(x) so that y = f(x) Hope that the same f(x)

also works on unseen X’, Y’

* Where y can be:
* Real number: Regression
e Categorical: Classification

e Data is labeled:

* Have many pairs {(x, y)}
* X...vector of binary, categorical, real valued features
e y..class: {+1, -1}, or a real number

Jure Leskovec, Stanford CS246: Mining Massive Datasets,

8/29/2023 http://cs246.stanford.edu

Cross Validation

* To evaluate how the model performs on unseen data.
* Process: v
 Randomly partition dataset into k equal-sized subsamples.
* Retain 1 subsample as test set, use k-1 as training set. _.

YI

* Repeat k times, each subsample is test set once.
* Average results from the k folds to get a single estimation. Training and test set

Nearest neighbor

* Keep the whole training dataset: {(x, y)}

* A guery example (vector) x comes

* Find closest example(s) x '

* Predict y

* Works for both regression and classification

Regression; Scatter plots

g y(new) =7
° X(neW)

0 L]
0 10 Eeature X 20

« Suggests a relationship between x and y
« Regression: given new observed xMW, estimate y("ew)

Nearest neighbor regression

40r

>
5 y(”eW) =7
80 e A
20 ® y',

R, g
o
o
. x(new)
% @

Feature x

» Find training data x® closest to x™W); predict y(

20

“Predictor”:

Given new features:
Find nearest example
Return its value

Nearest neighbor regression

“Predictor’:
40r .
. Given new features:
- Find nearest example
N .
D Return its value
< -
ot ——
o —
20r
—_—
-—-—
_—
N
00 10 20
Feature x

 Find training data x(closest to x(ew); predict y/
* Defines an (implict) function f(x)
* “Form” is piecewise constant

Nearest neighbor classifier

“Predictor’ :
Given new features:
Find nearest example
1 Return its value
0
1
T
O 1 0
1 ®
0
0

Nearest neighbor classifier

“Predictor”:

Given new features:
Find nearest example

1 Return its value

“Closest” training x?
Typically Euclidean distance:

d(x.z") = \/Z?(‘L? — x)?

X -

Nearest neighbor classification

Nearest Nbr:

Class 1 Piecewise linear boundary

Class 0

......

......
......
I

Nearest neighbor classifier

Nearest neighbor classifier

All points where we decide 1

DecisioyBoundary

All points where we decide 0

X -

Nearest neighbor classification

* 3D decision boundary

* In general: Nearest-neighbor classifier produces piecewise linear decision
boundaries

k-nearest neighbors (kNN)

* Find the k-nearest neighbors to x (") in the data
* i.e., rank the feature vectors according to Euclidean distance
e select the k vectors which have smallest distance to x(™e%)

* Regression
* Usually just average the y-values of the k closest training examples

e Classification
* ranking yields k feature vectors and a set of k class labels
 pick the class label which is most common in this set (“vote”)

* Note: for two-class problems, if kisodd (k = 1, 3,5, ...) there will never be
any “ties”

k-nearest neighbors (k-NN)

* 1-nearest neighbor is sensitive to
noise or miss-labeled data

* Solution: smooth by having k
nearest neighbors

1NN
A

o ® _ ® noisysample

>
every example in the blue

shaded area will be
misclassified as the blue class

3 NN
®
.'lf""l
o ®
® ®
= ™
'. ..
.I..I
" mgm

every example in the blue
shaded area will be classified
correctly as the red class

k = Number of Nearest Neighbors

151 101 69 45 31 21 1 7 5 3
IS Y Y I |

k-nearest neighbors

0.30
[

0.25

Test Error

* Tradeoffs in choosing k

0.20

0.15

* Small k .

* Good at capturing fine-grained patterns i By

* May overfit, i.e. be sensitive to random idiosyncrasies in the training data
e Large k

* Makes stable predictions by averaging over lots of examples
* May underfit, i.e. fail to capture important regularities

 Rule of thumb: k < \/n, where n is the number of training examples

k-nearest neighbors

k-nearest neighbors

e k is an example of a hyperparameter, something we can’t fit as part of the learning
algorithm itself

* We can tune hyperparameters using a validation set:

— validation
training set A test set
train w/ k =1 —— err=17.3
X
trainw/ k=3 —— err=1.1 | testerr=1.2
V4
train w/ k = 10 — err = 10.5

X

* The test set is used only at the very end, to measure the generalization performance of
the final configuration.

Pitfalls: the curse of dimensionality

* Low-dimensional visualizations are misleading! In high dimensions,
“most” points are far apart.

* In high dimensions, “most” points are approximately the same
distance.

(=]

'U 'U'O'U
4 I\JWA‘

@
]
06 08

"/
i

//

o) oF \

N

0.0

Neighborhood 0.0 02 04 06

Fraction of Volume

* As the dimensions grow, the amount of data we need to generalize
accurately grows exponentially.

Pitfalls: computational cost

 Number of computations at training time: O (lazy learning)

 Number of computations at test time, per query (naive algorithm)
* Calculate m-dimensional Euclidean distances with n data points: O (mn)
* Sort the distances: O(n logn)

* This must be done for each query, which is very expensive by the
standards of a learning algorithm!

* Need to store the entire dataset in memory (non-parametric)!

* Tons of work has gone into algorithms and data structures for
efficient nearest neighbors with high dimensions and/or large
datasets.

Distance-weighted k-NN

* Might want to weight nearer neighbors more heavily
n w(i)y(i)
fxmew)) = =2——
o™ :
(D) y(new)
where , w<i>:exp(—d(x ,I:W))

0@ =

d(x(new)’ x(i))z
and d(xMmew), x(i))z is the distance between x (W) and x

* Note now it makes sense to use all training examples instead of k

Summary

K-nearest neighbor models
» Classification (vote)
 Regression (average or weighted average)

Piecewise linear decision boundary
* How to calculate

Simple algorithm that does all its work at test time — in a sense, no learning!

Test data and overfitting
* Model “complexity” for knn
* Use validation data to estimate test error rates & select k

	Nearest Neighbors
	Supervised learning
	Cross Validation
	Nearest neighbor
	Regression; Scatter plots
	Nearest neighbor regression
	Nearest neighbor regression
	Nearest neighbor classifier
	Nearest neighbor classifier
	Nearest neighbor classification
	Nearest neighbor classifier
	Nearest neighbor classifier
	Nearest neighbor classification
	𝑘-nearest neighbors (kNN)
	𝑘-nearest neighbors (𝑘-NN)
	𝑘-nearest neighbors
	𝑘-nearest neighbors
	𝑘-nearest neighbors
	Pitfalls: the curse of dimensionality
	Pitfalls: computational cost
	Distance-weighted 𝑘-NN
	Summary

