
Nearest Neighbors
Adopted from slides by Roger Grosse, Alex Ihler



Supervised learning

• Would like to do prediction: 
 estimate a function f(x) so that y = f(x)

• Where y can be:
• Real number: Regression
• Categorical: Classification

• Data is labeled:
• Have many pairs {(x, y)}

• x … vector of binary, categorical, real valued features 
• y … class: {+1, -1}, or a real number

Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu 28/29/2023

Hope that the same f(x) 
also works on unseen X’, Y’



Cross Validation

• To evaluate how the model performs on unseen data.
• Process:

• Randomly partition dataset into k equal-sized subsamples.
• Retain 1 subsample as test set, use k-1 as training set.
• Repeat k times, each subsample is test set once.
• Average results from the k folds to get a single estimation.
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Nearest neighbor

• Keep the whole training dataset: {(𝒙𝒙,𝒚𝒚)}
• A query example (vector) 𝒙𝒙 comes
• Find closest example(s) 𝒙𝒙 ∗

• Predict �𝒚𝒚
• Works for both regression and classification



Regression; Scatter plots

• Suggests a relationship between x and y
• Regression: given new observed x(new), estimate y(new)
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Nearest neighbor regression

• Find training data x(i) closest to x(new); predict y(i) 
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Nearest neighbor regression

• Find training data x(i) closest to x(new); predict y(i) 
• Defines an (implict) function f(x)
• “Form” is piecewise constant

“Predictor”:
Given new features:
  Find nearest example
  Return its value
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Nearest neighbor classifier
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Nearest neighbor classifier
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“Closest” training x? 
Typically Euclidean distance:
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Nearest neighbor classification
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Nearest neighbor classifier
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Nearest neighbor classifier
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Nearest neighbor classification

• 3D decision boundary

• In general: Nearest-neighbor classifier produces piecewise linear decision 
boundaries



𝑘𝑘-nearest neighbors (kNN)

• Find the 𝑘𝑘-nearest neighbors to 𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛) in the data
• i.e., rank the feature vectors according to Euclidean distance
• select the 𝑘𝑘 vectors which have smallest distance to 𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛)

• Regression
• Usually just average the 𝑦𝑦-values of the 𝑘𝑘 closest training examples

• Classification
• ranking yields 𝑘𝑘 feature vectors and a set of 𝑘𝑘 class labels
• pick the class label which is most common in this set (“vote”)
• Note: for two-class problems, if k is odd (𝑘𝑘 = 1, 3, 5, …) there will never be 

any “ties”



𝑘𝑘-nearest neighbors (𝑘𝑘-NN)

• 1-nearest neighbor is sensitive to 
noise or miss-labeled data

• Solution: smooth by having 𝑘𝑘 
nearest neighbors



𝑘𝑘-nearest neighbors

• Tradeoffs in choosing 𝑘𝑘

• Small 𝑘𝑘
• Good at capturing fine-grained patterns
• May overfit, i.e. be sensitive to random idiosyncrasies in the training data

• Large 𝑘𝑘
• Makes stable predictions by averaging over lots of examples
• May underfit, i.e. fail to capture important regularities

• Rule of thumb: 𝑘𝑘 < 𝑛𝑛, where 𝑛𝑛 is the number of training examples



𝑘𝑘-nearest neighbors

𝑘𝑘 = 1 𝑘𝑘 = 15



𝑘𝑘-nearest neighbors

• 𝑘𝑘 is an example of a hyperparameter, something we can’t fit as part of the learning 
algorithm itself

• We can tune hyperparameters using a validation set:

• The test set is used only at the very end, to measure the generalization performance of 
the final configuration. 



Pitfalls: the curse of dimensionality

• Low-dimensional visualizations are misleading! In high dimensions, 
“most” points are far apart. 

• In high dimensions, “most” points are approximately the same 
distance. 

• As the dimensions grow, the amount of data we need to generalize 
accurately grows exponentially.



Pitfalls: computational cost

• Number of computations at training time: 0 (lazy learning)
• Number of computations at test time, per query (naïve algorithm)

• Calculate 𝑚𝑚-dimensional Euclidean distances with 𝑛𝑛 data points: 𝑂𝑂(𝑚𝑚𝑚𝑚) 
• Sort the distances: 𝑂𝑂(𝑛𝑛 log𝑛𝑛)

• This must be done for each query, which is very expensive by the 
standards of a learning algorithm! 

• Need to store the entire dataset in memory (non-parametric)! 
• Tons of work has gone into algorithms and data structures for 

efficient nearest neighbors with high dimensions and/or large 
datasets.



Distance-weighted 𝑘𝑘-NN

• Might want to weight nearer neighbors more heavily

𝑓𝑓 𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛) =
∑𝑖𝑖=1𝑛𝑛 𝜔𝜔(𝑖𝑖)𝑦𝑦(𝑖𝑖)

∑𝑖𝑖=1𝑛𝑛 𝜔𝜔(𝑖𝑖)

 where

𝜔𝜔(𝑖𝑖) =
1

𝑑𝑑 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑥𝑥 𝑖𝑖 2

 and 𝑑𝑑 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑥𝑥 𝑖𝑖 2
 is the distance between 𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛) and 𝑥𝑥 𝑖𝑖

• Note now it makes sense to use all training examples instead of 𝑘𝑘

𝒘𝒘(𝒊𝒊) = 𝐞𝐞𝐞𝐞𝐞𝐞(−
𝒅𝒅 𝒙𝒙 𝒊𝒊 ,𝒙𝒙(𝒏𝒏𝒏𝒏𝒏𝒏) 𝟐𝟐

𝑲𝑲𝒘𝒘
)



Summary

• K-nearest neighbor models
• Classification   (vote)
• Regression      (average or weighted average)

• Piecewise linear decision boundary
• How to calculate

• Simple algorithm that does all its work at test time — in a sense, no learning!

• Test data and overfitting
• Model “complexity” for knn
• Use validation data to estimate test error rates & select k
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