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Supervised learning

• Would like to do prediction: 
 estimate a function f(x) so that y = f(x)

• Where y can be:
• Real number: Regression
• Categorical: Classification

• Data is labeled:
• Have many pairs {(x, y)}

• x … vector of binary, categorical, real valued features 
• y … class: {+1, -1}, or a real number

Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu 28/31/2023
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Training and  test set

Estimate y = f(x) on X,Y.
Hope that the same f(x) 

also works on unseen X’, Y’



Supervised learning – Training of parametric 
models
• Notation

• Features      x
• Targets/labels       y
• Predictions  ŷ
• Parameters θ Program  (“Learner”)

Characterized by 
some “parameters” θ

Procedure (using θ) 
that outputs a prediction

Training data 
(examples)

Features

Learning algorithm

Change θ
Improve performance

Target values
Score performance
(“loss function”)



Linear regression
• Given an input x we would like to 

compute an output y
• For example:
    - Predict height from age
    - Predict Google’s price from 

Yahoo’s price
    - Predict distance from wall from 

sensors

X

Y



Linear regression
• Given an input x we would like to 

compute an output y
• In linear regression we assume that y 

and x are related with the following 
equation: 

                
                           

    where 𝑤𝑤0,𝑤𝑤1 are parameters
X

Y

What we are 
trying to predict

Observed values

�𝑦𝑦 = ℎ 𝑥𝑥 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥



Nearest neighbor regression

• Find training data x(i) closest to x(new); predict y(i) 
• Defines an (implict) function f(x)
• “Form” is piecewise constant

“Predictor”:
Given new features:
  Find nearest example
  Return its value
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K-Nearest neighbor regression

ref : Andreas C.Muller and Sarah Guido. 2017. Introduction to 
machine learning with pyhton



• Our goal is to estimate 𝑤𝑤0,𝑤𝑤1 from a 
training data of < 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) > pairs

•  Optimization goal: minimize squared error 
(least squares):

• Why least squares?

    - minimizes squared distance between 
measurements and predicted line

     - has a nice probabilistic interpretation

     - the math is pretty

Linear regression

argmin𝑤𝑤0,𝑤𝑤1�
𝑖𝑖

(𝑦𝑦 𝑖𝑖 − 𝑤𝑤0 − 𝑤𝑤1𝑥𝑥(𝑖𝑖))2
X

Y �𝑦𝑦 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥



Solving linear regression
• To optimize – closed form:

• We just take the derivative w.r.t. to w and set to 0:



Regression example

• Generated: w=2
• Noise: std=1
• Recovered: w=2.03



Multivariate regression



Multivariate regression

• What if we have several inputs?
    - Stock prices for Yahoo, Microsoft and Ebay for the Google 

prediction task 
• This becomes a multivariate regression problem
• Again, its easy to model:
                        h(x) = w0 + w1x1+ … + wnxn 

Google’s stock 
price

Yahoo’s stock price

Microsoft’s stock price



Notation

• ℎ 𝑥𝑥 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛

• Define “feature” 𝑥𝑥0 = 1, then
• ℎ𝜽𝜽 𝒙𝒙 = 𝜽𝜽𝑇𝑇𝒙𝒙

𝜽𝜽 =

𝜃𝜃0
𝜃𝜃1
⋯
𝜃𝜃𝑛𝑛

𝒙𝒙 =
1
𝑥𝑥1⋯
𝑥𝑥𝑛𝑛

𝑛𝑛 features



Notation

• 𝑚𝑚 examples in the data: (𝒙𝒙 1 ,𝑦𝑦 1 ), (𝒙𝒙 2 ,𝑦𝑦 2 ),⋯ , (𝒙𝒙 𝑚𝑚 ,𝑦𝑦 𝑚𝑚 )
• Loss function (squared error)

𝐽𝐽 𝜽𝜽 =
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

𝑦𝑦 𝑖𝑖 − ℎ𝜽𝜽 𝒙𝒙 𝑖𝑖
2

=
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

𝑦𝑦 𝑖𝑖 − 𝜽𝜽𝑇𝑇𝒙𝒙(𝑖𝑖) 2



Notation

• Rewrite using matrix form

𝐽𝐽 𝜽𝜽 =
1
𝑚𝑚

𝒚𝒚𝑻𝑻 − 𝜽𝜽𝑇𝑇𝑋𝑋𝑇𝑇 𝒚𝒚𝑻𝑻 − 𝜽𝜽𝑇𝑇𝑋𝑋𝑇𝑇 𝑇𝑇

𝜽𝜽 =

𝜃𝜃0
𝜃𝜃1
⋯
𝜃𝜃𝑛𝑛

𝒚𝒚 =
𝑦𝑦(1)

⋯
𝑦𝑦(𝑚𝑚)

𝑋𝑋 =
𝑥𝑥0

(1) ⋯ 𝑥𝑥𝑛𝑛
(1)

⋮ ⋱ ⋮
𝑥𝑥0

(𝑚𝑚) ⋯ 𝑥𝑥𝑛𝑛
(𝑚𝑚)

𝑋𝑋 =

1 2104 5 1 45
1 1416 3 2 40
1 1534 3 2 30
1 852 2 1 36

𝒚𝒚 =

460
232
315
178



ℎ 𝑥𝑥 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1
2 + 𝜃𝜃2𝑥𝑥2

2

In some cases we would like to use 
polynomial or other terms based on the 
input data, are these still linear 
regression problems?

Yes. As long as the coefficients are 
linear the equation is still a linear 
regression problem!

Not all functions can be approximated by a line/hyperplane…



Learning/Optimizing Multivariate 
Least Squares
Approach 1: Normal equation



Solving linear regression
• To optimize – closed form:

• We just take the derivative w.r.t. to 𝜽𝜽 and set to 0:

argmin𝜽𝜽�
𝑖𝑖

(𝑦𝑦 𝑖𝑖 − 𝜽𝜽𝑇𝑇𝒙𝒙(𝑖𝑖))2 ⟹
𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

�
𝑖𝑖

(𝑦𝑦 𝑖𝑖 − 𝜽𝜽𝑇𝑇𝒙𝒙 𝑖𝑖 )2 = 0



Normal equation for multivariate regression

• To solve for 𝜽𝜽 analytically

𝜽𝜽 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝒚𝒚

𝜽𝜽 =

𝜃𝜃0
𝜃𝜃1
⋯
𝜃𝜃𝑛𝑛

𝒚𝒚 =
𝑦𝑦(1)

⋯
𝑦𝑦(𝑚𝑚)

𝑋𝑋 =
1 ⋯ 𝑥𝑥𝑛𝑛

(1)

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑥𝑛𝑛

(𝑚𝑚)



Example

𝑋𝑋 =

1 2104 5 1 45
1 1416 3 2 40
1 1534 3 2 30
1 852 2 1 36

𝜽𝜽 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝒚𝒚

𝒚𝒚 =

460
232
315
178



Learning/Optimizing Multivariate 
Least Squares
Approach 2: Gradient Descent



Visualizing the loss function



Gradient descent

• Want to find parameters which minimize the loss



Gradient descent

31



Gradient descent in more dimensions

• Gradient vector

• 𝛻𝛻𝐽𝐽 𝜃𝜃 = 𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃0

, 𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃1

,⋯

• Indicates direction of steepest ascent
• (negative = steepest descent)

−∇𝐽𝐽(𝜃𝜃)



Gradient descent

• Initialization
• Step size

• Can change as a function of iteration

• Gradient direction
• Stop condition

Initialize 𝜽𝜽
Do {
    𝜽𝜽 ← 𝜽𝜽 − 𝛼𝛼𝛼𝛼𝐽𝐽(𝜽𝜽)
} while (stop condition)



Gradient descent for linear regression

• Goal: minimize loss function

𝐽𝐽 𝜽𝜽 =
1
2�
𝑖𝑖=1

𝑚𝑚

𝑦𝑦 𝑖𝑖 − 𝜽𝜽𝑇𝑇𝒙𝒙 𝑖𝑖
2

= 1
2�

𝑖𝑖=1

𝑚𝑚

𝑦𝑦 𝑖𝑖 −�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖)

2

𝜕𝜕𝐽𝐽(𝜽𝜽)
𝜕𝜕𝜃𝜃𝑗𝑗

=
1
2
𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

�
𝑖𝑖=1

𝑚𝑚

𝑦𝑦 𝑖𝑖 −�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖)

2

= �
𝑖𝑖=1

𝑚𝑚

𝑦𝑦 𝑖𝑖 −�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) 𝜕𝜕

𝜕𝜕𝜃𝜃𝑗𝑗
𝑦𝑦 𝑖𝑖 −�

𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖)

= �
𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗

(𝑖𝑖)



Gradient descent for linear regression

• Initialize 𝜽𝜽
• Do {

•     𝜃𝜃𝑗𝑗 ← 𝜃𝜃𝑗𝑗 − 𝛼𝛼∑𝑖𝑖=1𝑚𝑚 ∑𝑗𝑗=0𝑛𝑛 𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗

(𝑖𝑖)

• } while (stop condition)

(Simultaneously update 𝜃𝜃𝑗𝑗 for all 𝑗𝑗)

𝜃𝜃𝜃0 ← 𝜃𝜃0 − 𝛼𝛼�
𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑦𝑦 𝑖𝑖

𝜃𝜃𝜃1 ← 𝜃𝜃1 − 𝛼𝛼�
𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑦𝑦 𝑖𝑖 𝑥𝑥1

(𝑖𝑖)

𝜃𝜃𝜃2 ← 𝜃𝜃2 − 𝛼𝛼�
𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑦𝑦 𝑖𝑖 𝑥𝑥2

(𝑖𝑖)



𝛼𝛼 - learning rate



Gradient descent versus normal equation

Gradient descent
• Need to choose 𝛼𝛼
• Needs many iterations
• Works well even when 𝑛𝑛 is large

Normal equation
• No need to choose 𝛼𝛼
• Don’t need to iterate
• Need to compute 𝑋𝑋𝑇𝑇𝑋𝑋 −1

• Slow if 𝑛𝑛 is very large



Regularization



Underfitting and overfitting

• Ways to increase complexity
• Add features

• Ways to decrease complexity
• Remove features
• Regularization



Regularization for linear regression

• Modify loss function to add “preference” for small parameter values

𝐽𝐽 𝜽𝜽 = �
𝑖𝑖=1

𝑚𝑚

𝑦𝑦 𝑖𝑖 − 𝜽𝜽𝑇𝑇𝒙𝒙 𝑖𝑖 2
+
𝜆𝜆
2

𝜽𝜽

• Normal equation
𝜽𝜽 = 𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝒚𝒚



Regularization for linear regression

• Regularized gradient descent
𝜕𝜕𝐽𝐽(𝜽𝜽)
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗

(𝑖𝑖) + 𝜆𝜆𝜃𝜃𝑗𝑗

𝜃𝜃𝑗𝑗 ← 𝜃𝜃𝑗𝑗(1 − 𝛼𝛼𝛼𝛼) − 𝛼𝛼�
𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=0

𝑛𝑛

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) − 𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗

(𝑖𝑖)



Regularization

• Compare between unreg. & reg. results



Different regularization functions

• More general, 𝐿𝐿𝑝𝑝 regularizer: ∑𝑗𝑗 𝜃𝜃𝑗𝑗
𝑝𝑝

1
𝑝𝑝

𝐿𝐿1 𝐿𝐿2
ridge



A geometrical view of the lasso compared 
with a penalty on the squared weights
• Lasso tends to generate sparser solutions than a quadratic regularizer
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