Linear Regression




Supervised learning

* Would like to do prediction:

estimate a function f(x) so that y = f(x)
Y
* Where y can be:
o |r

* Real number: Regression
* Categorical: Classification

Training and test set

e Data is labeled: Estimate y = f(x) on X, Y.

* Have many pairs {(x, y)} Hope that the same f{(x)
« X...vector of binary, categorical, real valued features /S0 wWorks on unseen X', Y
e y..class: {+1, -1}, or a real number

Jure Leskovec, Stanford CS246: Mining Massive Datasets,

8/31/2023 http://cs246.stanford.edu



Supervised learning — Training of parametric
models

* Notation
* Features
» Targets/labels
* Predictions
 Parameters

Learning algorithm

=<K X

Change 6

Program (“Learner”)
Improve performance

Characterized by
some “parameters” @

Procedure (using 6)
Catures that outputs a predictior

Target values




Linear regression

* Given an input x we would like to
compute an outputy

* For example:
- Predict height from age

- Predict Google’ s price from
Yahoo' s price

- Predict distance from wall from
sensors




Linear regression

* Given an input x we would like to
compute an outputy

* |In linear regression we assume thaty
and x are related with the following
equation:

Observed values
What we are

trying to predi(k ]

y=h(x) =wy+ wyx

where W, W1 are parameters

Y




Nearest neighbor regression

“Predictor’:
40r .
. Given new features:
- Find nearest example
N .
D Return its value
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 Find training data x( closest to x(ew); predict y/
* Defines an (implict) function f(x)
* “Form” is piecewise constant



K-Nearest neighbor regression
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ref : Andreas C.Muller and Sarah Guido. 2017. Introduction to
machine learning with pyhton



Linear regression

« Our goal is to estimate wy, w; from a
training data of < x(©,y(® > pairs

» Optimization goal: minimize squared error
(least squares):

argmin,, . z(y(i) — Wy — wyx)?
i

* Why least squares?

- minimizes squared distance between
measurements and predicted line

- has a nice probabilistic interpretation

- the math is pretty



Solving linear regression

 To optimize — closed form:

» We just take the derivative w.r.t. to w and set to O:
EZO}; _Wxi)2 — 2Z_xi(yi _Wxi) —
aw H )
zzxi(yi -wx)=0 = 2foyf —2zwxfxi =0
DXy, =2 wxl =
inyi

_ 1
Ty
xi

i




Regression example

e Generated: w=2
* Noise: std=1
e Recovered: w=2.03




Multivariate regression

Size (feet?) | Number of | Number of | Age of home Price (51000)
bedrooms floors (years)
£ L9 e I Uy
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178




Multivariate regression

* What if we have several inputs?

- Stock prices for Yahoo, Microsoft and Ebay for the Google
prediction task

* This becomes a multivariate regression problem
e Again, its easy to model:

h(x) = wy + WX+ ... + W X

/ n“'n
Google’ s stock Microsoft’s stock price
price

Yahoo' s stock price



Notation

n features

*h(x) =0y +0x; +6,x, + -+ 6,,x,

* Define “feature” x, = 1, then

* hg(x) = 0"x
0, 1
o=|% x =1



Notation

* m examples in the data: (D, y(), (@, y(2)), ... (™), 5,(m)
e Loss function (squared error)

m

J(0) = %Z (= ho(x®))

=1

1 m
_ EEW My INON
=1



Size (feet?) | Number of | Number of | Age of home Price ($1000)
bedrooms floors (years)
° 1 To T3 T4 Y

Notation T e

1416 3 2 40 232

1534 3 2 30 315

852 2 1 36 178
o . . . f 1 2104 5 1 45 460
Rewrite using matrix form wo[1 146 3 2 40| (232
|1 1534 3 2 30 | 315
1 852 2 1 36 178

1(6) = %(yT —0TXT)(yT — HTXT)T

V) (1) (1)

y(l) 9() xO oo xn

y=| - 9=|"" x=: -~
y (™) 0, XM ™



Not all functions can be approximated by a line/hyperplane...

h(x) =0y + 01x* + 0,x,7

In some cases we would like to use
polynomial or other terms based on the
iInput data, are these still linear
regression problems?




Learning/Optimizing Multivariate
Least Squares



Solving linear regression

 To optimize — closed form:

* We just take the derivative w.r.t. to 8 and set to O:

: . 9, . .
argming Z(y(‘) —0TxV)? = EZ(y(‘) —0"x)?2 =0
i J



Normal equation for multivariate regression

* To solve for 8 analytically

0 =(XTX)"1xTy

6 1
y@® 90 1 - xP
y(m) Hn 1 - xém)



Example

Size (feet?) | Number of | Number of | Age of home Price (51000)
bedrooms floors (years)
I L s T4 Y
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178
1 2104 5 1 45 460
v—[1 1416 3 2 40 y =232
1 1534 3 2 30 315
1 852 2 1 36 178



Learning/Optimizing Multivariate
Least Squares



Visualizing the loss function




Gradient descent

* Want to find parameters which minimize the loss

o J(8)



Gradient descent

31



Gradient descent in more dimensions

 Gradient vector
. _(9J(6) 9j(8)
Vj(6) _(690 ' 960, ' ) 90

* Indicates direction of steepest ascent

* (negative = steepest descent)




Gradient descent

* |nitialization

* Step size Initialize O
* Can change as a function of iteration Do {
» Gradient direction 0 —0—aljo)

« Stop condition } while (stop condition)



Gradient descent for linear regression

e Goal: minimize loss function

m




Gradient descent for linear regression

* Initialize 0
e Do { (Simultaneously update 6; for all j)

© 06— X (B0 -y @)

* } while (stop condition)

m n
6,0 €« 60 — az Z ij](l) — y(l)

i=1 \j=0



a - learning rate

Too low

Just right Too high
() | (o) | O —
| IlI |I IIlI |I IIlI
I'xl Ia" \ f \ /
\ / \ / \ /
\ / \ / \ /
\ \ \—
\ \ \
\ \ N
0
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the minimum point

minimum point

which lead to divergent
behaviors



Gradient descent versus normal equation

Gradient descent Normal equation
* Need to choose a * No need to choose «
* Needs many iterations * Don’t need to iterate

« Works well even when nislarge  * Need to compute (X7 X)~1
* Slow if n is very large



Regularization



Underfitting and overfitting

* Ways to increase complexity
* Add features

* Ways to decrease complexity
* Remove features Predictive
Error
* Regularization

Error on Test Data

Error on Training Data

-

Model Complexity
b

Ideal Range
for Model Complexity

1
=X

L J

Underfitting Overfitting



Regularization for linear regression

* Modify loss function to a%d “preference” for small parameter values

. . A
J(@) = Z(y(l) _ HTx(l))z 1+ 5 16|
i=1

* Normal equation
0=QI+XTX)"1xTy



Regularization for linear regression

* Regularized gradient descent

6](0) i(z (‘))x()+/19

_ y(i>) x]@

n
0, « 0;(1—al)— aE (Z Hjx](l)
j=0



Regularization

 Compare between unreg. & reg. results

1

Alpha =0
(Unregularized) o5

Alpha =1




Different regularization functions

1

* More general, L, regularizer: (Zjlgjlp)p

[sosurfaces: ||6]|, = constant

AN 1

(1)
uy

.
NZEANZ

p=0.5 p=1 p=2 p=4
Lasso Quadratic
Ly L,



A geometrical view of the lasso compared
with a penalty on the squared weights

* Lasso tends to generate sparser solutions than a quadratic regularizer
S

Data term only:
all 6. non-zero

Regularized estimate:
some ¢, may be zero

N
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