Linear Regression

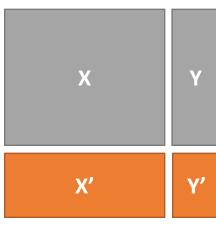
Adopted from slides by William Cohen, Geoffrey Hinton, and Alexander Ihler

Supervised learning

Would like to do prediction:

estimate a function f(x) so that y = f(x)

- Where y can be:
 - Real number: Regression
 - Categorical: Classification
- Data is labeled:
 - Have many pairs {(x, y)}
 - x ... vector of binary, categorical, real valued features
 - **y** ... class: {+1, -1}, or a real number

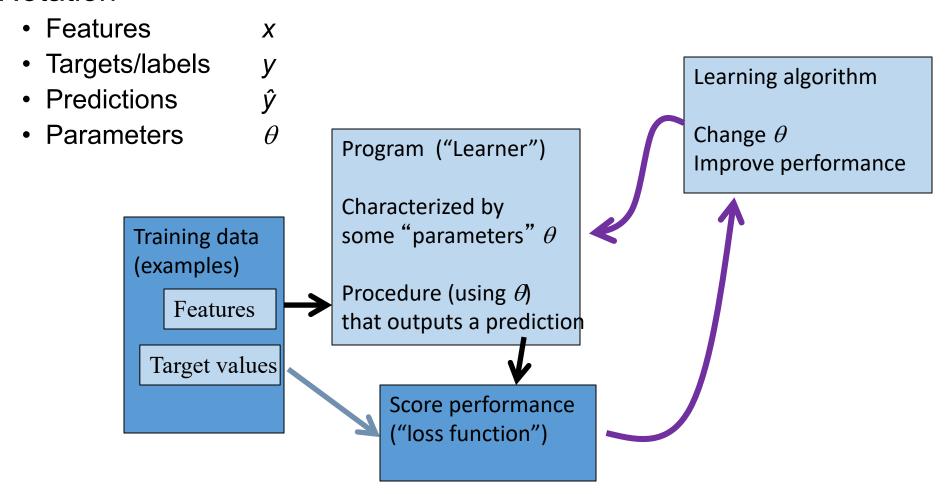


Training and test set

Estimate y = f(x) on X, Y. Hope that the same f(x)also works on unseen X', Y'

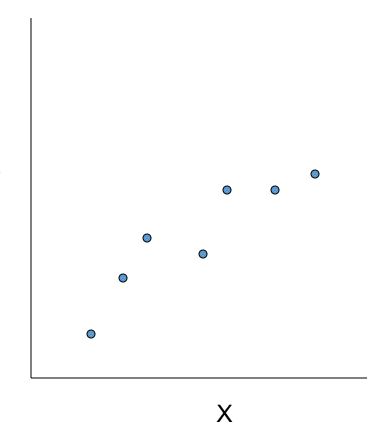
Supervised learning – Training of parametric models

Notation



Linear regression

- Given an input x we would like to compute an output y
- For example:
 - Predict height from age
 - Predict Google's price from Yahoo's price
 - Predict distance from wall from sensors



Linear regression

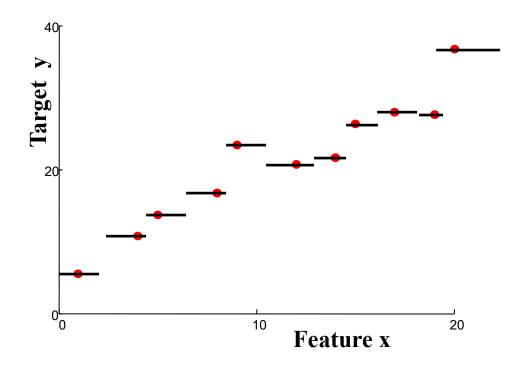
- Given an input x we would like to compute an output y
- In linear regression we assume that y and x are related with the following equation:

What we are trying to predict $\hat{y} = h(x) = w_0 + w_1 x$

X

where w_0 , w_1 are parameters

Nearest neighbor regression

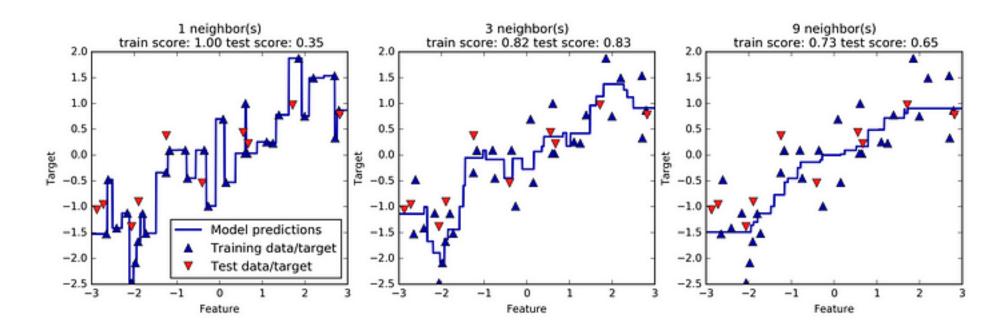


- Find training data $x^{(i)}$ closest to $x^{(new)}$; predict $y^{(i)}$
- Defines an (implict) function f(x)
- "Form" is piecewise constant

"Predictor":

Given new features: Find nearest example Return its value

K-Nearest neighbor regression



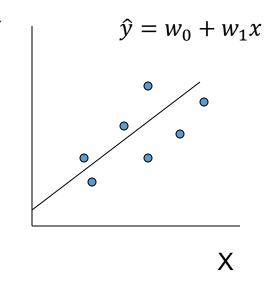
ref: Andreas C.Muller and Sarah Guido. 2017. Introduction to machine learning with pyhton

Linear regression

- Our goal is to estimate w_0, w_1 from a training data of $< x^{(i)}, y^{(i)} >$ pairs
- Optimization goal: minimize squared error (least squares):

$$\operatorname{argmin}_{w_0, w_1} \sum_{i} (y^{(i)} - w_0 - w_1 x^{(i)})^2$$

- Why least squares?
- minimizes squared distance between measurements and predicted line
 - has a nice probabilistic interpretation
 - the math is pretty



Solving linear regression

- To optimize closed form:
- We just take the derivative w.r.t. to w and set to 0:

$$\frac{\partial}{\partial w} \sum_{i} (y_{i} - wx_{i})^{2} = 2\sum_{i} -x_{i}(y_{i} - wx_{i}) \Rightarrow$$

$$2\sum_{i} x_{i}(y_{i} - wx_{i}) = 0 \Rightarrow 2\sum_{i} x_{i}y_{i} - 2\sum_{i} wx_{i}x_{i} = 0$$

$$\sum_{i} x_{i}y_{i} = \sum_{i} wx_{i}^{2} \Rightarrow$$

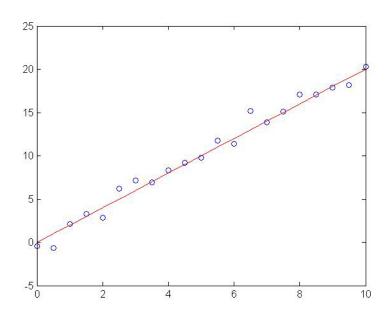
$$w = \frac{\sum_{i} x_{i}y_{i}}{\sum_{i} x_{i}^{2}}$$

Regression example

• Generated: w=2

• Noise: std=1

• Recovered: w=2.03

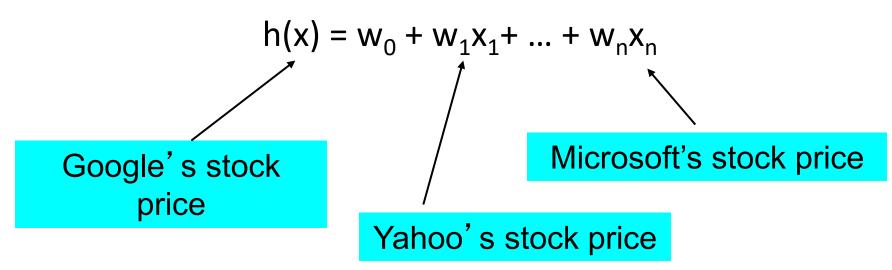


Multivariate regression

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:



Notation

• $h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

- Define "feature" $x_0 = 1$, then
- $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{\theta}^T \boldsymbol{x}$

$$oldsymbol{ heta} = egin{pmatrix} heta_0 \\ heta_1 \\ heta_n \end{pmatrix} \qquad oldsymbol{x} = egin{pmatrix} 1 \\ x_1 \\ \dots \\ x_n \end{pmatrix}$$

n features

Notation

- m examples in the data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})$
- Loss function (squared error)

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) \right)^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \boldsymbol{\theta}^T \boldsymbol{x}^{(i)})^2$$

Notation

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Rewrite using matrix form

$$X = \begin{pmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} 460 \\ 232 \\ 315 \\ 178 \end{pmatrix}$$

$$J(\boldsymbol{\theta}) = \frac{1}{m} (\boldsymbol{y}^T - \boldsymbol{\theta}^T X^T) (\boldsymbol{y}^T - \boldsymbol{\theta}^T X^T)^T$$

$$\mathbf{y} = \begin{pmatrix} y^{(1)} \\ \cdots \\ y^{(m)} \end{pmatrix} \qquad \boldsymbol{\theta} = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \cdots \\ \theta_n \end{pmatrix} \qquad \qquad X = \begin{pmatrix} x_0^{(1)} & \cdots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \cdots & x_n^{(m)} \end{pmatrix}$$

Not all functions can be approximated by a line/hyperplane...

$$h(x) = \theta_0 + \theta_1 x_1^2 + \theta_2 x_2^2$$

In some cases we would like to use polynomial or other terms based on the input data, are these still linear regression problems?

Yes. As long as the *coefficients* are linear the equation is still a linear regression problem!

Learning/Optimizing Multivariate Least Squares

Approach 1: Normal equation

Solving linear regression

- To optimize closed form:
- We just take the derivative w.r.t. to θ and set to 0:

$$\operatorname{argmin}_{\boldsymbol{\theta}} \sum_{i} (y^{(i)} - \boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})^{2} \Longrightarrow \frac{\partial}{\partial \theta_{j}} \sum_{i} (y^{(i)} - \boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})^{2} = 0$$

Normal equation for multivariate regression

• To solve for $oldsymbol{ heta}$ analytically

$$\boldsymbol{\theta} = (X^T X)^{-1} X^T \boldsymbol{y}$$

$$\mathbf{y} = \begin{pmatrix} y^{(1)} \\ \cdots \\ y^{(m)} \end{pmatrix} \qquad \boldsymbol{\theta} = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \cdots \\ \theta_n \end{pmatrix} \qquad X = \begin{pmatrix} 1 & \cdots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_n^{(m)} \end{pmatrix}$$

Example

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

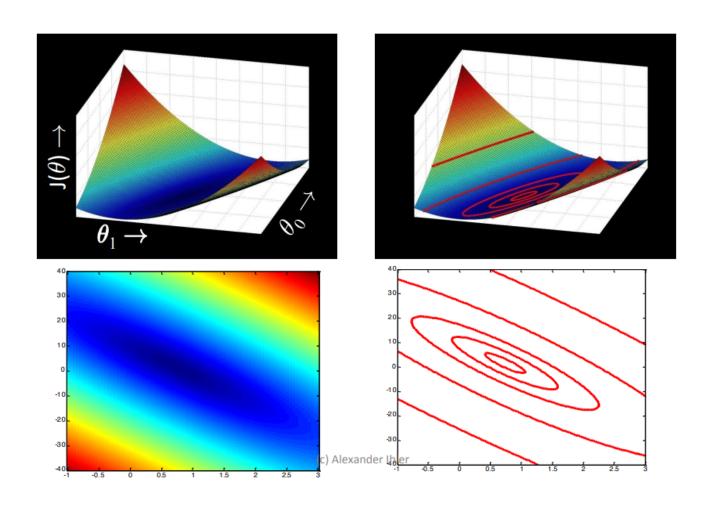
$$X = \begin{pmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{pmatrix} \qquad y = \begin{pmatrix} 460 \\ 232 \\ 315 \\ 178 \end{pmatrix}$$

$$\boldsymbol{\theta} = (X^T X)^{-1} X^T \boldsymbol{y}$$

Learning/Optimizing Multivariate Least Squares

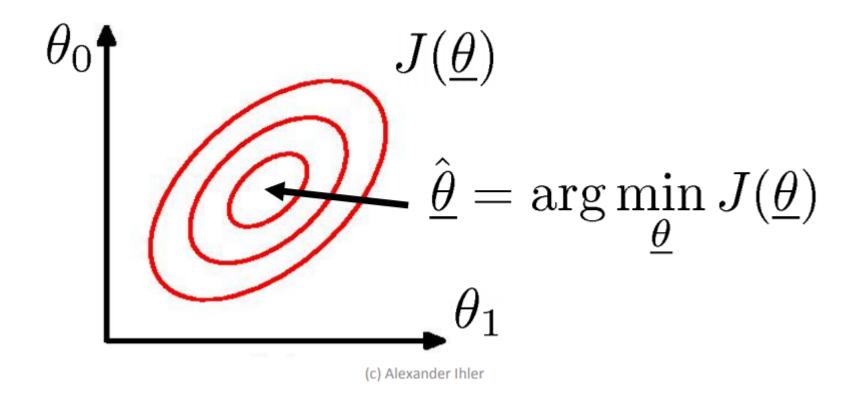
Approach 2: Gradient Descent

Visualizing the loss function

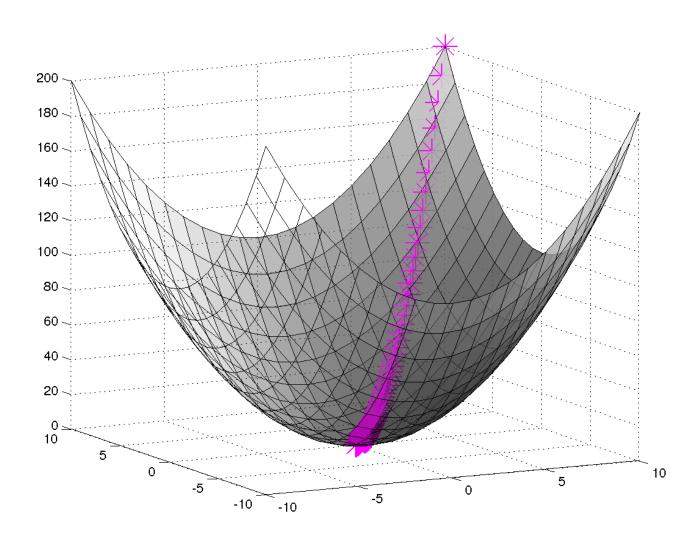


Gradient descent

Want to find parameters which minimize the loss



Gradient descent

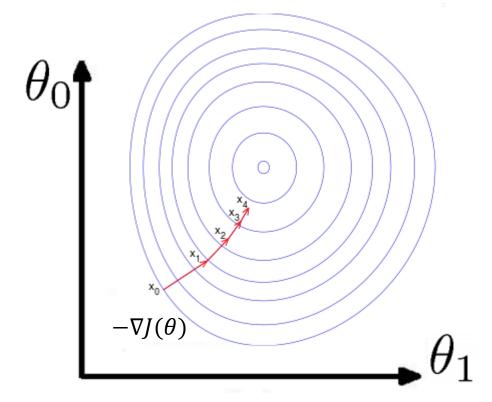


Gradient descent in more dimensions

Gradient vector

•
$$\nabla J(\theta) = \left(\frac{\partial J(\theta)}{\partial \theta_0}, \frac{\partial J(\theta)}{\partial \theta_1}, \cdots\right)$$

- Indicates direction of steepest ascent
- (negative = steepest descent)



Gradient descent

- Initialization
- Step size
 - Can change as a function of iteration
- Gradient direction
- Stop condition

```
Initialize \theta
Do {
\theta \leftarrow \theta - \alpha \nabla J(\theta)
} while (stop condition)
```

Gradient descent for linear regression

• Goal: minimize loss function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} \right)^2 = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \sum_{j=0}^{n} \theta_j x_j^{(i)} \right)^2$$

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_j} = \frac{1}{2} \frac{\partial}{\partial \theta_j} \sum_{i=1}^m \left(y^{(i)} - \sum_{j=0}^n \theta_j x_j^{(i)} \right)^2$$

$$= \sum_{i=1}^m \left(y^{(i)} - \sum_{j=0}^n \theta_j x_j^{(i)} \right) \frac{\partial}{\partial \theta_j} \left(y^{(i)} - \sum_{j=0}^n \theta_j x_j^{(i)} \right)$$

$$= \sum_{i=1}^m \left(\sum_{j=0}^n \theta_j x_j^{(i)} - y^{(i)} \right) x_j^{(i)}$$

Gradient descent for linear regression

- Initialize θ
- Do {
- $\theta_j \leftarrow \theta_j \alpha \sum_{i=1}^m \left(\sum_{j=0}^n \theta_j x_j^{(i)} y^{(i)} \right) x_j^{(i)}$
- } while (stop condition)

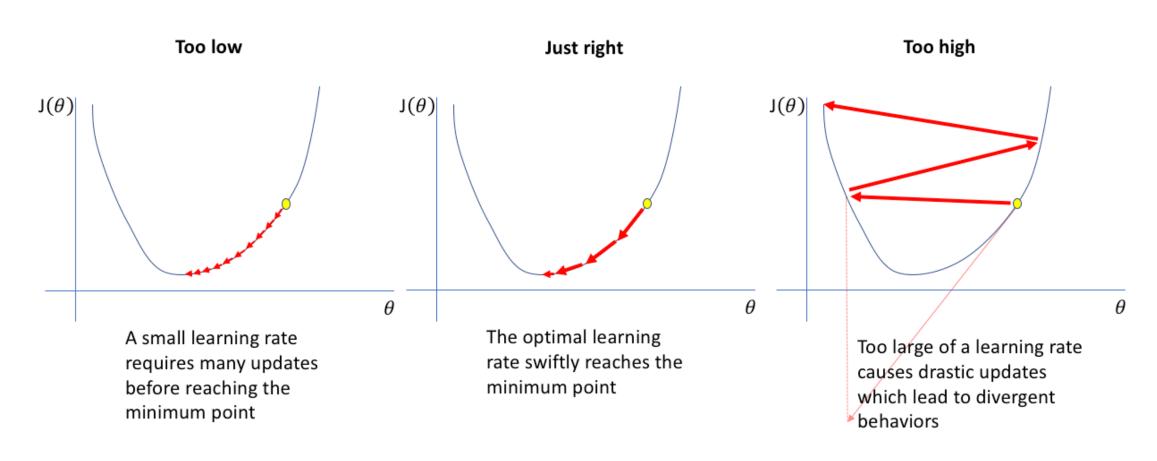
(Simultaneously update θ_j for all j)

$$\theta'_{0} \leftarrow \theta_{0} - \alpha \sum_{i=1}^{m} \left(\sum_{j=0}^{n} \theta_{j} x_{j}^{(i)} - y^{(i)} \right)$$

$$\theta'_{1} \leftarrow \theta_{1} - \alpha \sum_{i=1}^{m} \left(\sum_{j=0}^{n} \theta_{j} x_{j}^{(i)} - y^{(i)} \right) x_{1}^{(i)}$$

$$\theta'_{2} \leftarrow \theta_{2} - \alpha \sum_{i=1}^{m} \left(\sum_{j=0}^{n} \theta_{j} x_{j}^{(i)} - y^{(i)} \right) x_{2}^{(i)}$$

lpha - learning rate



Gradient descent versus normal equation

Gradient descent

- Need to choose α
- Needs many iterations
- Works well even when n is large

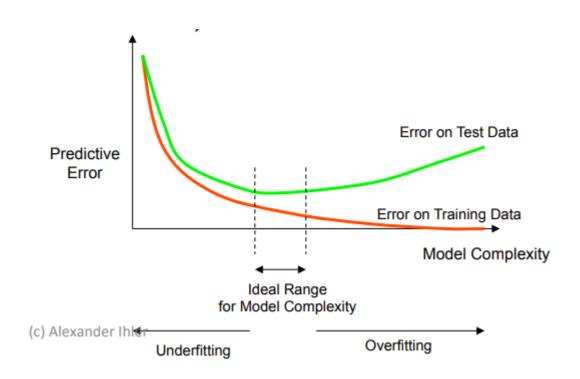
Normal equation

- No need to choose α
- Don't need to iterate
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large

Regularization

Underfitting and overfitting

- Ways to increase complexity
 - Add features
- Ways to decrease complexity
 - Remove features
 - Regularization



Regularization for linear regression

• Modify loss function to add "preference" for small parameter values

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} (y^{(i)} - \boldsymbol{\theta}^T \boldsymbol{x}^{(i)})^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|$$

Normal equation

$$\boldsymbol{\theta} = (\lambda I + X^T X)^{-1} X^T \boldsymbol{y}$$

Regularization for linear regression

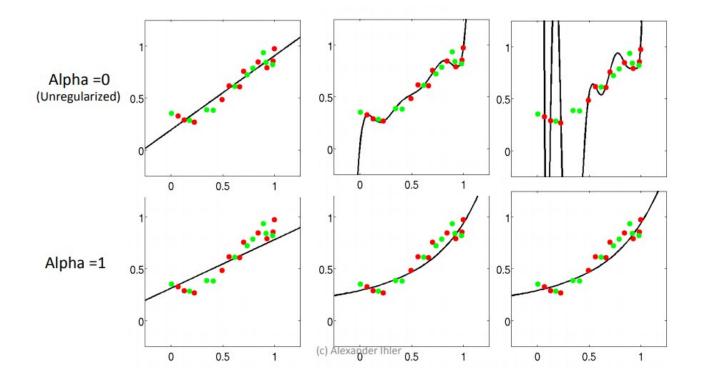
Regularized gradient descent

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_j} = \sum_{i=1}^m \left(\sum_{j=0}^n \theta_j x_j^{(i)} - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j$$

$$\theta_j \leftarrow \theta_j (1 - \alpha \lambda) - \alpha \sum_{i=1}^m \left(\sum_{j=0}^n \theta_j x_j^{(i)} - y^{(i)} \right) x_j^{(i)}$$

Regularization

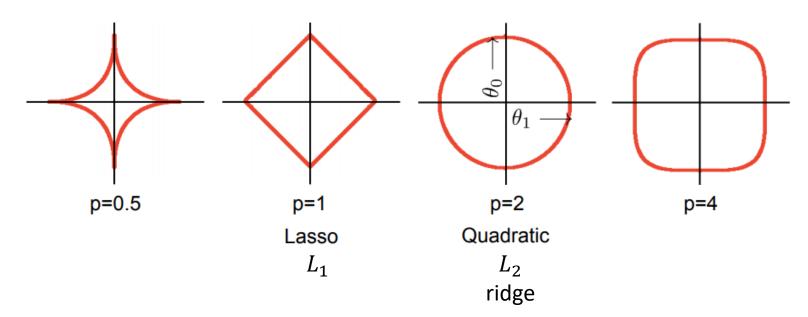
• Compare between unreg. & reg. results



Different regularization functions

• More general, L_p regularizer: $\left(\sum_j \left|\theta_j\right|^p\right)^{\frac{1}{p}}$

Isosurfaces: $\|\theta\|_{p} = constant$



A geometrical view of the lasso compared with a penalty on the squared weights

Lasso tends to generate sparser solutions than a quadratic regularizer

