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Linear classifiers

• Classifier model: 𝑓𝑓 𝑥𝑥; 𝜃𝜃 = 𝑇𝑇(𝜃𝜃𝜃𝜃)
• Loss function: 

𝐽𝐽(𝜃𝜃) =
1
𝑚𝑚
�
𝑖𝑖

𝑦𝑦 𝑖𝑖 𝜙𝜙 𝜃𝜃𝑥𝑥(𝑖𝑖) + 1 − 𝑦𝑦 𝑖𝑖 𝜙𝜙 −𝜃𝜃𝑥𝑥(𝑖𝑖)Class y = {0, 1} 

Class y = {-1, 1} 
𝐽𝐽(𝜃𝜃) =

1
𝑚𝑚
�
𝑖𝑖

𝜙𝜙 𝑦𝑦 𝑖𝑖 𝜃𝜃𝑥𝑥 𝑖𝑖



Surrogate loss functions

• 0-1:   ℒ 𝑧𝑧 = 𝟏𝟏 𝑧𝑧 < 0
• Logistic:  ℒ 𝑧𝑧 = − log𝜎𝜎 𝑧𝑧
• Exponential: ℒ 𝑧𝑧 = 𝑒𝑒−𝛽𝛽𝑧𝑧

• Hinge:  ℒ 𝑧𝑧 = max 0,1 − 𝑧𝑧
• …

Logistic 
regression

→ 𝑧𝑧



Support Vector Machines (SVM)

• Classifier: 𝑓𝑓 𝑥𝑥; 𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝜃𝜃)
• Loss function:

𝐽𝐽 𝜃𝜃 =
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

max 0,1 − 𝑦𝑦 𝑖𝑖 𝜃𝜃𝑥𝑥 𝑖𝑖 +
𝜆𝜆

2𝑚𝑚
𝜃𝜃

-1        0       1      2  

0/1 loss

pe
na

lty

𝑧𝑧 = 𝑦𝑦 𝜃𝜃𝑥𝑥

Hinge loss: max{0, 1-z}

𝐿𝐿2 regularization



• Which decision boundary is “better”?
• Both have zero training error  (perfect training accuracy)
• But, one of them seems intuitively better…

• How can we quantify “better”,
     and learn the “best” parameter settings?
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Linear classifiers
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Largest Margin
• Distance from the 

separating 
hyperplane 
corresponds to the 
“confidence”
of prediction

• Example:
• We are more sure 

about the class of A 
and B than of C 
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Margin:
(2 ×) the distance from the decision boundary to the 
closest example.



Largest Margin
• Margin 𝜸𝜸: Distance of closest example from 

the decision line/hyperplane
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The reason we define margin this way is due to theoretical convenience and existence of 

generalization error bounds that depend on the value of margin.



Notations

• Parameters:
𝜃𝜃0,𝜃𝜃1,⋯ ,𝜃𝜃𝑛𝑛  ⟹  𝑏𝑏,𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛

• Data:
• Training examples:   

𝑥𝑥(1),𝑦𝑦 1 ,⋯ , 𝑥𝑥 𝑚𝑚 ,𝑦𝑦 𝑚𝑚

• Each example 𝑖𝑖:
𝑥𝑥(𝑖𝑖) = 𝑥𝑥1

(𝑖𝑖),⋯ , 𝑥𝑥𝑛𝑛
𝑖𝑖

𝑦𝑦(𝑖𝑖) ∈ −1, +1
• Decision boundary: 

𝜃𝜃𝜃𝜃 = 0 ⟹  𝑤𝑤 ⋅ 𝑥𝑥 + 𝑏𝑏 = 0

𝑤𝑤



p = a (aTx)
||a|| = aTa = 1

Projection: Using Inner Products

𝒙𝒙

𝒂𝒂

𝒂𝒂𝑇𝑇𝒙𝒙

Projection of 𝒙𝒙 along the direction 𝒂𝒂 ( 𝒂𝒂 = 1)



Distance from a point to a line

A

M

H
d(A, L) = AH
             = w ∙ (A-M)
             = w ∙ A – w ∙ M
             = w ∙ A + b

Remember w ∙ M = - b
since M belongs to line L

w
L

+

What is the margin?
• Let:

• Line L: w∙x+b = 0
• Point A
• Point M on line L

(0,0)
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Note we assume 
𝒘𝒘 𝟐𝟐 = 𝟏𝟏



Largest Margin
• Prediction = sign(w⋅x + b)
• “Confidence” = (w⋅ x + b) y
• For i-th datapoint:
𝜸𝜸(𝒊𝒊)

 
= 𝒘𝒘⋅ 𝒙𝒙(𝒊𝒊) + 𝒃𝒃 𝒚𝒚(𝒊𝒊)

• Want to solve:
𝐦𝐦𝐦𝐦𝐦𝐦
𝒘𝒘,𝒃𝒃

𝐦𝐦𝐦𝐦𝐦𝐦
𝒊𝒊
𝜸𝜸(𝒊𝒊)

• Can rewrite as

9/20/2023 18
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max
𝑤𝑤,𝑏𝑏

 𝛾𝛾

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 𝛾𝛾



Support Vector Machine

• Maximize the margin:
• Good according to intuition, 

theory (c.f. “VC dimension”) 
and practice

• 𝜸𝜸 is margin … distance from 
the separating hyperplane
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w⋅x+b=0

γ
γ

Maximizing the margin

γ

max
𝑤𝑤,𝑏𝑏

 𝛾𝛾

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 𝛾𝛾



Support Vector Machines

• Separating hyperplane 
is defined by the 
support vectors

• Points on +/- planes 
from the solution 

• If you knew these 
points, you could 
ignore the rest

• Generally, 
n+1 support vectors (for n dim. data)
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Support Vector Machines
Deriving the margin



Support Vector Machine

• Maximize the margin:
• Good according to intuition, 

theory (c.f. “VC dimension”) 
and practice

• 𝜸𝜸 is margin … distance from 
the separating hyperplane
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w⋅x+b=0

γ
γ

Maximizing the margin

γ

max
𝑤𝑤,𝑏𝑏

 𝛾𝛾

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 𝛾𝛾



Canonical Hyperplane: Problem

• Problem:
• Let 𝒘𝒘⋅𝒙𝒙 + 𝒃𝒃 𝒚𝒚 = 𝜸𝜸 

then 𝟐𝟐𝒘𝒘⋅𝒙𝒙 + 𝟐𝟐𝒃𝒃 𝒚𝒚 = 𝟐𝟐𝜸𝜸
• Scaling w increases margin!

• Solution:
• Let’s require support vectors 𝒙𝒙(𝒋𝒋) to 

be on the plane defined by: 
𝒘𝒘 ⋅ 𝒙𝒙(𝒋𝒋) + 𝒃𝒃 = ±𝟏𝟏
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𝑥𝑥(2)

|||| w
w

𝑥𝑥(1)



Canonical Hyperplane: Solution

• Want to maximize margin!
• What is the relation 

between x1 and x2?
• 𝒙𝒙(𝟏𝟏) = 𝒙𝒙(𝟐𝟐) + 𝟐𝟐𝟐𝟐 𝒘𝒘

||𝒘𝒘||
• We also know:

• 𝒘𝒘 ⋅ 𝒙𝒙(𝟏𝟏) + 𝒃𝒃 = +𝟏𝟏
• 𝒘𝒘 ⋅ 𝒙𝒙(𝟐𝟐) + 𝒃𝒃 = −𝟏𝟏

• So: 
• 𝒘𝒘 ⋅ 𝒙𝒙(𝟏𝟏) + 𝒃𝒃 = +𝟏𝟏
• 𝒘𝒘 𝒙𝒙(𝟐𝟐) + 𝟐𝟐𝟐𝟐 𝒘𝒘

||𝒘𝒘||
+ 𝒃𝒃 = +𝟏𝟏

• 𝒘𝒘 ⋅ 𝒙𝒙(𝟐𝟐) + 𝒃𝒃 + 𝟐𝟐𝟐𝟐 𝒘𝒘⋅𝒘𝒘
𝒘𝒘

= +𝟏𝟏
9/20/2023 24

2γ
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=

⋅
=⇒ γ

2ww w=⋅
Note:

|||| w
w

𝑥𝑥(2)

𝑥𝑥(1)



Maximizing the Margin

• We started with

But w can be arbitrarily large!
• We normalized and...

• Then:
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min𝑤𝑤,𝑏𝑏
1
2

||𝑤𝑤||2

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 1
This is called SVM with “hard” constraints

2
2
1minargminarg1maxargmaxarg ww

w
===γ

2γ

|||| w
w

Quadratic Programming

max𝑤𝑤,𝑏𝑏 𝛾𝛾
𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 𝛾𝛾 𝑥𝑥(2)

𝑥𝑥(1)



A 1D Example

• Suppose we have three data points
x = -3, y = -1
x = -1, y = -1
x =  2, y =  1

• Many separating perceptrons, sign[𝑤𝑤𝑥𝑥 + 𝑏𝑏]
• Anything with 𝑤𝑤𝑥𝑥 + 𝑏𝑏 =  0 between -1 and 2

• We can write the margin constraints
(-1)*(w (-3) + b) > 1      => b < 3w - 1
(-1)*(w (-1) + b) > 1  => b <   w - 1
w (2) + b > 1     => b > -2w + 1 w



A 1D Example

• Suppose we have three data points
x = -3, y = -1
x = -1, y = -1
x =  2, y =  1

• Many separating perceptrons, sign[𝑤𝑤𝑤𝑤 + 𝑏𝑏]
• Anything with 𝑤𝑤𝑥𝑥 + 𝑏𝑏 =  0 between -1 and 2

• We can write the margin constraints
(-1)*(w (-3) + b) > 1      => b < 3w - 1
(-1)*(w (-1) + b) > 1  => b <   w - 1
w (2) + b > 1     => b > -2w + 1

• Ex: w = 1, b = 0
w



A 1D Example

• Suppose we have three data points
x = -3, y = -1
x = -1, y = -1
x =  2, y =  1

• Many separating perceptrons, sign[𝑤𝑤𝑤𝑤 + 𝑏𝑏]
• Anything with 𝑤𝑤𝑥𝑥 + 𝑏𝑏 =  0 between -1 and 2

• We can write the margin constraints
(-1)*(w (-3) + b) > 1       => b < 3w - 1
(-1)*(w (-1) + b) > 1  => b <   w - 1
w (2) + b > 1     => b > -2w + 1

• Ex: w = 1, b = 0
• Minimize ||w|| => w =  .66, b = -.33

• Two data on the margin; constraints “tight”

w



Non-linearly Separable Data

• If data is not separable introduce penalty:

• Minimize ǁwǁ2 plus the 
number of training mistakes

• Set C using cross validation

• How to penalize mistakes?
• All mistakes are not

equally bad!
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min𝑤𝑤,𝑏𝑏
1
2

𝑤𝑤 2 +  C ⋅ (#number of mistakes)

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 1

+ +

+
+

+

+

+
-

-
-

-

--

-

+-

-



Support Vector Machines

• Introduce slack variables ξi

• If point 𝑥𝑥(𝑖𝑖) is on the wrong 
side of the margin then 
get penalty ξi

9/20/2023 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
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min
𝑤𝑤,𝑏𝑏,𝜉𝜉𝑖𝑖≥0

 
1
2

𝑤𝑤 2 + 𝐶𝐶 ⋅�
𝑖𝑖=1

𝑛𝑛

𝜉𝜉𝑖𝑖

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖
+ +

+
+

+

+
+ - -

--
-

For each data point:
If margin ≥ 1, don’t care
If margin < 1, pay linear penalty

+

ξj

- ξi

SVM with “soft” constraints



Slack Penalty 𝑪𝑪

• What is the role of slack penalty C:
• C=∞: Only want to w, b 

that separate the data
• C=0: Can set ξi to anything, 

then w=0 (basically 
ignores the data)

9/20/2023 31

min
𝑤𝑤,𝑏𝑏,𝜉𝜉𝑖𝑖≥0

 
1
2

𝑤𝑤 2 + 𝐶𝐶 ⋅�
𝑖𝑖=1

𝑛𝑛

𝜉𝜉𝑖𝑖

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖

+ +

+
+

+

+
+ - -

--
-

+ -

big C

“good” C
small C

(0,0)



Support Vector Machines

• Combine the constraints and the objective function

min
𝑤𝑤,𝑏𝑏,𝜉𝜉𝑖𝑖≥0

 
1
2
𝑤𝑤 2 + 𝐶𝐶 ⋅�

𝑖𝑖=1

𝑛𝑛

𝜉𝜉𝑖𝑖

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖

𝜉𝜉𝑖𝑖 = � 0,  if 1 − 𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≤ 0
1 − 𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏), if 1 − 𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) > 0

𝜉𝜉𝑖𝑖 ≥ 1 − 𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏)

𝜉𝜉𝑖𝑖 = max 0,1 − 𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏)

𝜉𝜉𝑖𝑖 ≥ 0



Support Vector Machines

• SVM in the “natural” form
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argmin
𝑤𝑤,𝑏𝑏

 
1
2
𝑤𝑤 ⋅ 𝑤𝑤 + 𝐶𝐶 ⋅�

𝑖𝑖=1

𝑛𝑛

max 0,1 − 𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏)

Margin Empirical loss L (how well we fit training data)



Support Vector Machines
How to compute the margin?



SVM: How to estimate w?

• Want to estimate 𝒘𝒘 and 𝒃𝒃!
• Standard way: Use a solver!

• Solver: software for finding solutions to 
“common” optimization problems

• Use a quadratic solver:
• Minimize quadratic function
• Subject to linear constraints

• Problem: Solvers are inefficient for big data!
9/20/2023 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
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min
𝑤𝑤,𝑏𝑏

 
1
2
𝑤𝑤 ⋅ 𝑤𝑤 + 𝐶𝐶 ⋅�

𝑖𝑖=1

𝑛𝑛

𝜉𝜉𝑖𝑖

𝑠𝑠. 𝑡𝑡.∀𝑖𝑖,𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖



SVM: How to estimate w?

• Want to minimize J(w,b):

• Compute the gradient ∇𝒋𝒋 w.r.t. 𝒘𝒘𝒋𝒋
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∇𝐽𝐽𝑗𝑗 =
𝜕𝜕𝐽𝐽(𝑤𝑤, 𝑏𝑏)
𝜕𝜕𝑤𝑤𝑗𝑗

= 𝑤𝑤𝑗𝑗 + 𝐶𝐶�
𝑖𝑖=1

𝑛𝑛
𝜕𝜕𝜕𝜕(𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖))

𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝜕𝜕(𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖))
𝜕𝜕𝑤𝑤𝑗𝑗

= 0 if 𝑦𝑦 𝑖𝑖 (𝑤𝑤 ⋅ 𝑥𝑥(𝑖𝑖) + 𝑏𝑏) ≥ 1

 = −𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗
(𝑖𝑖) else

𝐽𝐽(𝑤𝑤, 𝑏𝑏) =
1
2
�
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗
2 + 𝐶𝐶�

𝑖𝑖=1

𝑛𝑛

max 0,1 − 𝑦𝑦(𝑖𝑖)(�
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗
(𝑖𝑖) + 𝑏𝑏)

Empirical loss 𝑳𝑳(𝒙𝒙 𝒊𝒊 ,𝒚𝒚(𝒊𝒊))



SVM: How to estimate w?

• Batch Gradient Descent:
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Iterate until convergence:
• For j = 1 … d

• Evaluate: 
• Update: 

𝒘𝒘′𝒋𝒋 ← 𝒘𝒘𝒋𝒋  − 𝜂𝜂∇𝑱𝑱𝒋𝒋
• w ← w’

∇𝑱𝑱𝒋𝒋 =
𝜕𝜕𝜕𝜕(𝑤𝑤, 𝑏𝑏)
𝜕𝜕𝑤𝑤𝑗𝑗

= 𝑤𝑤𝑗𝑗 + 𝐶𝐶�
𝑖𝑖=1

𝑛𝑛
𝜕𝜕𝜕𝜕(𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖))

𝜕𝜕𝑤𝑤𝑗𝑗

η…learning rate parameter 
C… regularization parameter



SVM: How to estimate w?

• Stochastic Gradient Descent
• Instead of evaluating gradient over all examples evaluate it for each 

individual training example

• Stochastic gradient descent:

9/20/2023 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu 39

∇𝐽𝐽𝑗𝑗(𝑥𝑥 𝑖𝑖 ) = 𝑤𝑤𝑗𝑗 + 𝐶𝐶 ⋅
𝜕𝜕𝜕𝜕(𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖))

𝜕𝜕𝑤𝑤𝑗𝑗

Iterate until convergence:
• For i = 1 … n

• For j = 1 … d
• Compute: ∇𝑱𝑱𝒋𝒋(𝑥𝑥 𝑖𝑖 )
• Update: 𝒘𝒘’𝒋𝒋 ← 𝒘𝒘𝒋𝒋  − 𝜂𝜂∇𝑱𝑱𝒋𝒋(𝑥𝑥 𝑖𝑖 )

Notice: no summation
over i anymore



Support Vector Machines
Example



Example: Text categorization

• Example by Leon Bottou:
• Reuters RCV1 document corpus

• Predict a category of a document
• One vs. the rest classification

• n = 781,000 training examples (documents)
• 23,000 test examples
• d = 50,000 features

• One feature per word
• Remove stop-words
• Remove low frequency words
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Example: Text categorization

• Questions:
• (1) Is SGD successful at minimizing J(w,b)?
• (2) How quickly does SGD find the min of J(w,b)?
• (3) What is the error on a test set?
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Training time         Value of J(w,b)        Test error 
Standard SVM
“Fast SVM”
SGD-SVM

(1) SGD-SVM is successful at minimizing the value of J(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable



What about multiple classes?
• Idea 1:

One against all
Learn 3 classifiers

• + vs. {o, -}
• -  vs. {o, +}
• o vs. {+, -}
Obtain:
 w+ b+,  w- b-,  wo bo

• How to classify?
• Return class c

arg maxc  wc x + bc
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Multiclass SVM
• Idea 2: Learn 3 sets of weights simoultaneously!

• For each class c estimate wc, bc
• Want the correct class yi to have highest margin:
 wyi xi + byi ≥  1 + wc xi + bc   ∀c ≠ yi  , ∀i
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(xi, yi)



Multiclass SVM

• Optimization problem:

• To obtain parameters wc , bc (for each class c) 
we can use similar techniques as for 2 class SVM

• SVM is widely perceived a very powerful learning algorithm
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