Adopted from slides by

Jure Leskovec, Anand Rajaraman, Jeff Ullman, http://www.mmds.org
and Alexander Ihler

Linear classifiers

- Classifier model: $f(x; \theta) = T(\theta x)$
- Loss function:

Class y = {0, 1}
$$J(\theta) = \frac{1}{m} \sum_{i} \left(y^{(i)} \phi(\theta x^{(i)}) + (1 - y^{(i)}) \phi(-\theta x^{(i)}) \right)$$

Class
$$y = \{-1, 1\}$$

$$J(\theta) = \frac{1}{m} \sum_{i} \phi\left(y^{(i)}(\theta x^{(i)})\right)$$

Surrogate loss functions

• 0-1:

$$\mathcal{L}(z) = \mathbf{1}[z < 0]$$

• Logistic:

$$\mathcal{L}(z) = -\log \sigma(z)$$

• Exponential:

$$\mathcal{L}(z) = e^{-\beta z}$$

• Hinge:

$$\mathcal{L}(z) = \max\{0, 1-z\}$$

Logistic

regression

•

-2

Support Vector Machines (SVM)

• Classifier: $f(x; \theta) = sign(\theta x)$

 L_2 regularization

Loss function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y^{(i)}(\theta x^{(i)})\} + \frac{\lambda}{2m} ||\theta||$$

Linear classifiers

- Which decision boundary is "better"?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better...
- How can we quantify "better",
 and learn the "best" parameter settings?

Feature 1, x_1

Feature 1, X_1

Largest Margin

Margin:

 $(2 \times)$ the distance from the decision boundary to the closest example.

 Distance from the separating hyperplane corresponds to the "confidence" of prediction

• Example:

 We are more sure about the class of A and B than of C

Largest Margin

• Margin γ : Distance of closest example from the decision line/hyperplane

The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.

Notations

• Parameters:

$$\theta_0, \theta_1, \cdots, \theta_n \implies b, w_1, w_2, \cdots, w_n$$

W

- Data:
 - Training examples:

$$(x^{(1)}, y^{(1)}), \cdots, (x^{(m)}, y^{(m)})$$

• Each example *i*:

$$x^{(i)} = \left(x_1^{(i)}, \dots, x_n^{(i)}\right)$$
$$y^{(i)} \in \{-1, +1\}$$

Decision boundary:

$$\theta x = 0 \implies w \cdot x + b = 0$$

Projection: Using Inner Products

Projection of x along the direction a (||a|| = 1)

$$||\mathbf{p} = \mathbf{a} (\mathbf{a}^{T} \mathbf{x})|$$

 $||\mathbf{a}|| = \mathbf{a}^{T} \mathbf{a} = 1$

Distance from a point to a line

What is the margin?

• Let:

- Note we assume $||w||_2 = 1$
- Line L: w·x+b = 0
- Point A
- Point M on line L

$$d(A, L) = AH$$

$$= w \cdot (A-M)$$

$$= w \cdot A - w \cdot M$$

$$= w \cdot A + b$$

Remember w · M = - b since M belongs to line L

Largest Margin

- Prediction = $sign(w \cdot x + b)$
- "Confidence" = $(w \cdot x + b) y$
- For i-th datapoint:

$$\boldsymbol{\gamma}^{(i)} = (\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} + \boldsymbol{b}) \boldsymbol{y}^{(i)}$$

Want to solve:

$$\max_{w,b} \min_{i} \gamma^{(i)}$$

Can rewrite as

$$\max_{w,b} \gamma$$

$$s.t. \forall i, y^{(i)} (w \cdot x^{(i)} + b) \ge \gamma$$

- Maximize the margin:
 - Good according to intuition, theory (c.f. "VC dimension") and practice

$$\max_{w,b} \gamma$$

$$s.t. \forall i, y^{(i)} (w \cdot x^{(i)} + b) \ge \gamma$$

• γ is margin ... distance from the separating hyperplane

Maximizing the margin

- Separating hyperplane is defined by the support vectors
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - Generally,
 n+1 support vectors (for n dim. data)

Deriving the margin

- Maximize the margin:
 - Good according to intuition, theory (c.f. "VC dimension") and practice

$$\max_{w,b} \gamma$$

$$s. t. \forall i, y^{(i)} (w \cdot x^{(i)} + b) \ge \gamma$$

• γ is margin ... distance from the separating hyperplane

Maximizing the margin

Canonical Hyperplane: Problem

Problem:

- Let $(w \cdot x + b)y = \gamma$ then $(2w \cdot x + 2b)y = 2\gamma$
 - Scaling w increases margin!

• Solution:

• Let's require support vectors $x^{(j)}$ to be on the plane defined by:

$$\boldsymbol{w}\cdot\boldsymbol{x^{(j)}}+\boldsymbol{b}=\pm\boldsymbol{1}$$

Canonical Hyperplane: Solution

- Want to maximize margin!
- What is the relation between x₁ and x₂?

•
$$x^{(1)} = x^{(2)} + 2\gamma \frac{w}{||w||}$$

We also know:

•
$$w \cdot x^{(1)} + b = +1$$

•
$$w \cdot x^{(2)} + b = -1$$

• So:

9/20/2023

•
$$w \cdot x^{(1)} + b = +1$$

•
$$w(x^{(2)} + 2\gamma \frac{w}{||w||}) + b = +1$$

•
$$w \cdot x^{(2)} + b + 2\gamma \frac{w \cdot w}{||w||} = +1$$

$$\Rightarrow \gamma = \frac{\|w\|}{w \cdot w} = \frac{1}{\|w\|}$$

Maximizing the Margin

We started with

$$\max_{w,b} \gamma$$

s.t. $\forall i, y^{(i)}(w \cdot x^{(i)} + b) \ge \gamma$

But w can be arbitrarily large!

We normalized and...

$$\arg\max\gamma = \arg\max\frac{1}{\|w\|} = \arg\min\|w\| = \arg\min\frac{1}{2}\|w\|^2$$

• Then: $\min_{w,b} \frac{1}{2} ||w||^2$ $s.t. \forall i, y^{(i)} (w \cdot x^{(i)} + b) \ge 1$

Quadratic Programming

A 1D Example

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$
 $x = 2, y = 1$

- Many separating perceptrons, sign[wx + b]
 - Anything with wx + b = 0 between -1 and 2
- We can write the margin constraints

$$(-1)^*(w(-3) + b) > 1$$
 => b < 3w - 1
 $(-1)^*(w(-1) + b) > 1$ => b < w - 1
w(2) + b > 1 => b > -2w + 1

A 1D Example

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$
 $x = 2, y = 1$

- Many separating perceptrons, sign[wx + b]
 - Anything with wx + b = 0 between -1 and 2
- We can write the margin constraints

$$(-1)^*(w(-3) + b) > 1$$
 => b < 3w - 1
 $(-1)^*(w(-1) + b) > 1$ => b < w - 1
w(2) + b > 1 => b > -2w + 1

• Ex: w = 1, b = 0

A 1D Example

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$
 $x = 2, y = 1$

- Many separating perceptrons, sign[wx + b]
 - Anything with wx + b = 0 between -1 and 2
- We can write the margin constraints

$$(-1)*(w (-3) + b) > 1$$
 => b < 3w - 1
 $(-1)*(w (-1) + b) > 1$ => b < w - 1
w (2) + b > 1 => b > -2w + 1

- Ex: w = 1, b = 0
- Minimize ||w|| => w = .66, b = -.33
 - Two data on the margin; constraints "tight"

Non-linearly Separable Data

If data is not separable introduce penalty:

$$\min_{w,b} \frac{1}{2} ||w||^2 + C \cdot (\text{#number of mistakes})$$

s. t. $\forall i, y^{(i)} (w \cdot x^{(i)} + b) \ge 1$

http://cs246.stanford.edu

- Minimize $\|w\|^2$ plus the number of training mistakes
- Set C using cross validation
- How to penalize mistakes?
 - All mistakes are not equally bad!

• Introduce slack variables ξ_i

$$\min_{\substack{w,b,\xi_i \ge 0}} \frac{1}{2} ||w||^2 + C \cdot \sum_{i=1}^{\infty} \xi_i$$

s.t. $\forall i, y^{(i)} (w \cdot x^{(i)} + b) \ge 1 - \xi_i$

• If point $x^{(i)}$ is on the wrong side of the margin then get penalty $\xi_{\mathbf{i}}$

SVM with "soft" constraints

9/20/2023

For each data point:

If margin ≥ 1, don't care
If margin < 1, pay linear penalty

Slack Penalty C

$$\min_{w,b,\xi_{i}\geq 0} \frac{1}{2} ||w||^{2} + C \cdot \sum_{i=1}^{n} \xi_{i}$$

$$s. t. \forall i, y^{(i)} (w \cdot x^{(i)} + b) \geq 1 - \xi_{i}$$

What is the role of slack penalty C:

- C=∞: Only want to w, b
 that separate the data
- C=0: Can set ξ_i to anything, then w=0 (basically ignores the data)

small C

Combine the constraints and the objective function

$$\min_{\substack{w,b,\xi_{i}\geq 0}} \frac{1}{2} ||w||^{2} + C \cdot \sum_{i=1}^{n} \xi_{i}$$

$$s.t. \forall i, y^{(i)} (w \cdot x^{(i)} + b) \geq 1 - \xi_{i}$$

$$\Rightarrow \quad \xi_i \ge 1 - y^{(i)} (w \cdot x^{(i)} + b)$$

$$\min_{\substack{w,b,\xi_{i}\geq 0}} \frac{1}{2} ||w||^{2} + C \cdot \sum_{i=1}^{n} \xi_{i} \\
s.t. \, \forall i, y^{(i)}(w \cdot x^{(i)} + b) \geq 1 - \xi_{i}$$

$$\Rightarrow \quad \xi_{i} \geq 1 - y^{(i)}(w \cdot x^{(i)} + b)$$

$$\xi_{i} \geq 0$$

$$\xi_{i} = \begin{cases}
0, & \text{if } 1 - y^{(i)}(w \cdot x^{(i)} + b) \leq 0 \\
1 - y^{(i)}(w \cdot x^{(i)} + b), & \text{if } 1 - y^{(i)}(w \cdot x^{(i)} + b) > 0$$

$$\xi_i = \max\{0, 1 - y^{(i)}(w \cdot x^{(i)} + b)\}$$

SVM in the "natural" form

$$\underset{w,b}{\operatorname{argmin}} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y^{(i)}(w \cdot x^{(i)} + b)\}$$

$$\underset{\text{Empirical loss L (how well we fit training data)}}{\operatorname{Empirical loss L (how well we fit training data)}}$$

9/20/2023

How to compute the margin?

$$\min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_{i}$$

$$s. t. \forall i, y^{(i)} (w \cdot x^{(i)} + b) \ge 1 - \xi_{i}$$

- Want to estimate w and b!
 - Standard way: Use a solver!
 - **Solver:** software for finding solutions to "common" optimization problems
- Use a quadratic solver:
 - Minimize quadratic function
 - Subject to linear constraints
- Problem: Solvers are inefficient for big data!

Want to minimize J(w,b):

$$J(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w_j)^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y^{(i)} (\sum_{j=1}^{d} w_j x_j^{(i)} + b) \right\}$$

• Compute the gradient
$$\nabla_{j}$$
 w.r.t. w_{j}

$$\nabla J_{j} = \frac{\partial J(w,b)}{\partial w_{j}} = w_{j} + C \sum_{i=1}^{n} \frac{\partial L(x^{(i)},y^{(i)})}{\partial w_{j}}$$

$$\frac{\partial L(x^{(i)}, y^{(i)})}{\partial w_j} = 0 \qquad \text{if } y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
$$= -y^{(i)}x_i^{(i)} \quad \text{else}$$

Empirical loss $L(x^{(i)}, y^{(i)})$

Batch Gradient Descent:

Iterate until convergence:

• For j = 1 ... d • Evaluate: $\nabla J_j = \frac{\partial J(w,b)}{\partial w_j} = w_j + C \sum_{i=1}^n \frac{\partial L(x^{(i)},y^{(i)})}{\partial w_j}$ • Update:

$$w'_{j} \leftarrow w_{j} - \eta \nabla J_{j}$$

• w ← w'

η...learning rate parameter C... regularization parameter

9/20/2023

Stochastic Gradient Descent

 Instead of evaluating gradient over all examples evaluate it for each individual training example

$$\nabla J_j(x^{(i)}) = w_j + C \cdot \frac{\partial L(x^{(i)}, y^{(i)})}{\partial w_j}$$

Notice: no summation over *i* anymore

Stochastic gradient descent:

Iterate until convergence:

- For i = 1 ... n
 - For j = 1 ... d
 - Compute: $\nabla J_j(x^{(i)})$
 - Update: $w'_j \leftarrow w_j \eta \nabla J_j(x^{(i)})$

Example

Example: Text categorization

- Example by Leon Bottou:
 - Reuters RCV1 document corpus
 - Predict a category of a document
 - One **vs.** the rest classification
 - *n* = **781,000** training examples (documents)
 - 23,000 test examples
 - *d* = **50,000** features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words

Example: Text categorization

Questions:

- (1) Is SGD successful at minimizing J(w,b)?
- (2) How quickly does **SGD** find the min of *J(w,b)*?
- (3) What is the error on a test set?

	Training time	Value of J(w,b)	Test error
Standard SVM	23,642 secs	0.2275	6.02%
"Fast SVM"	66 secs	0.2278	6.03%
SGD-SVM	1.4 secs	0.2275	6.02%

(1) SGD-SVM is successful at minimizing the value of *J(w,b)*

http://cs246.stanford.edu

- (2) SGD-SVM is super fast
- (3) SGD-SVM test set error is comparable
 Jure Leskovec, Stanford CS246: Mining Massive Datasets,

What about multiple classes?

• Idea 1:

One against all

Learn 3 classifiers

- + vs. {o, -}
- - vs. {o, +}
- o vs. {+, -}

Obtain:

$$\mathbf{w}_{+}\mathbf{b}_{+}$$
, $\mathbf{w}_{-}\mathbf{b}_{-}$, $\mathbf{w}_{0}\mathbf{b}_{0}$

- How to classify?
- Return class c $arg max_c w_c x + b_c$

Multiclass SVM

- Idea 2: Learn 3 sets of weights simoultaneously!
 - For each class c estimate w_c , b_c
 - Want the correct class y_i to have highest margin:

$$\mathbf{w}_{\mathbf{y}_i} \mathbf{x}_i + \mathbf{b}_{\mathbf{y}_i} \ge 1 + \mathbf{w}_{\mathbf{c}} \mathbf{x}_i + \mathbf{b}_{\mathbf{c}} \quad \forall \mathbf{c} \ne \mathbf{y}_i , \forall i$$

Multiclass SVM

Optimization problem:

$$\min_{w,b} \frac{1}{2} \sum_{c} ||w_{c}||^{2} + C \sum_{i=1}^{n} \xi_{i}
w_{y_{i}} \cdot x_{i} + b_{y_{i}} \ge w_{c} \cdot x_{i} + b_{c} + 1 - \xi_{i}
\psi c \ne y_{i}, \forall i
\xi_{i} \ge 0, \forall i$$

- To obtain parameters \mathbf{w}_c , \mathbf{b}_c (for each class \mathbf{c}) we can use similar techniques as for 2 class **SVM**
- SVM is widely perceived a very powerful learning algorithm