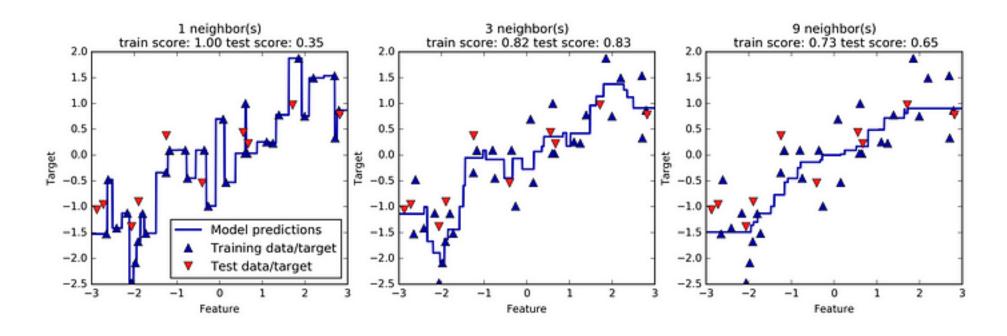
Decision Trees

Adopted from slides by Alexander Ihler and Jure Leskovec, Anand Rajaraman, Jeff Ullman, http://www.mmds.org

Supervised Learning

- Given examples of a function (X, Y = F(X))
- **Find** function $\widehat{Y} = h(X)$ to estimate F(X)
 - Continuous h(X): Regression
 - Discrete h(X): Classification

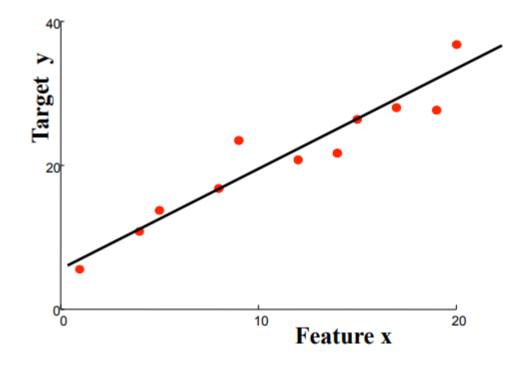
K-Nearest neighbor regression



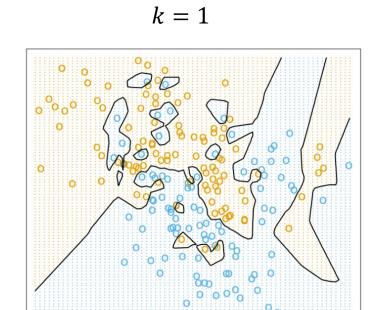
ref: Andreas C.Muller and Sarah Guido. 2017. Introduction to machine learning with pyhton

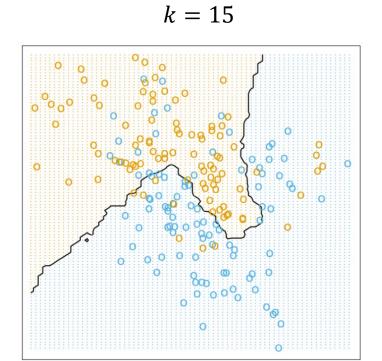
Linear regression

•
$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$



k-nearest neighbor classifier





Example: Gaussian Bayes for Iris Data

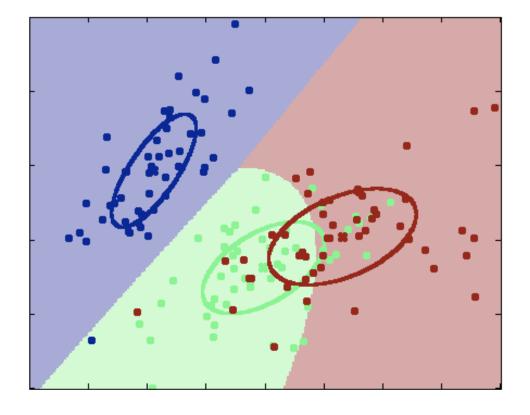
• Fit Gaussian distribution to each class {0,1,2}

$$p(y) = \text{Discrete}(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

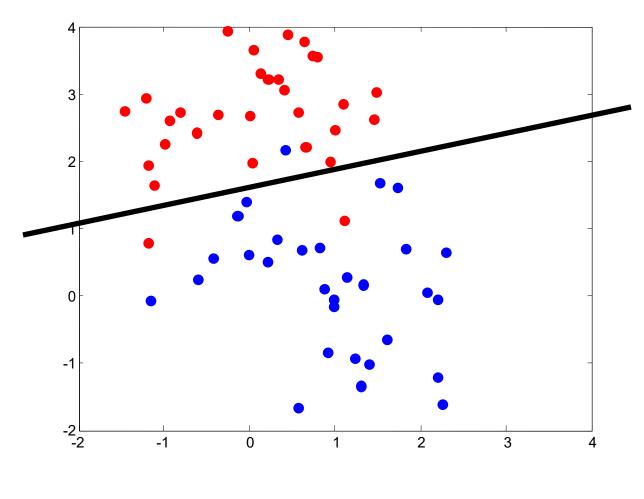
$$p(x_1, x_2 | y = 0) = \mathcal{N}(x; \mu_0, \Sigma_0)$$

$$p(x_1, x_2 | y = 1) = \mathcal{N}(x; \mu_1, \Sigma_1)$$

$$p(x_1, x_2 | y = 2) = \mathcal{N}(x; \mu_2, \Sigma_2)$$

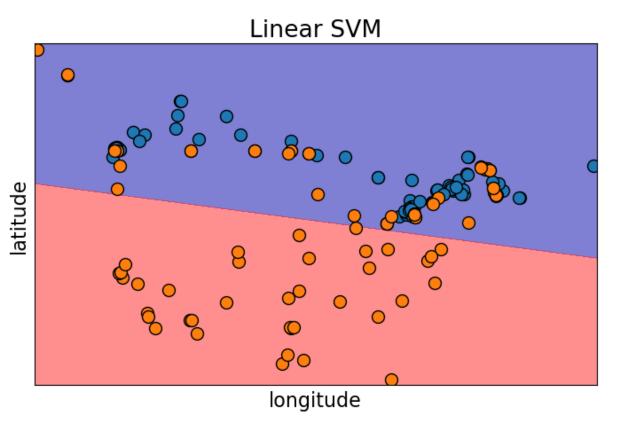


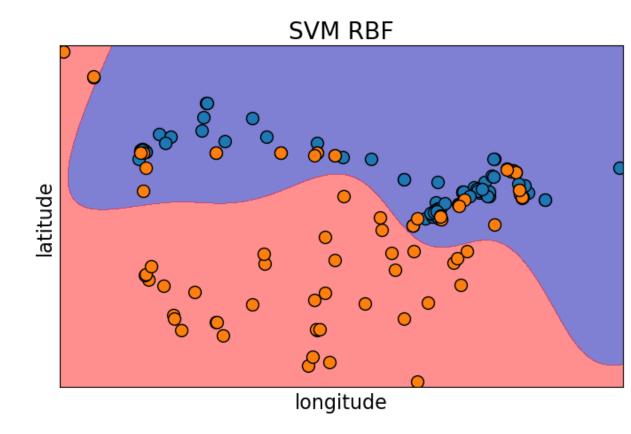
Linear Classifier



(c) Alexander Ihler

Support Vector Machine





Decision Trees

Input attributes:

- n features/attributes: $x_1, x_2, ... x_n$
- Each x_j has **domain O**_j
 - Categorical: O_i = {red, blue}
 - Numerical: $H_i = (0, 10)$
- **Y** is output variable with domain O_v :
 - Categorical: Classification, Numerical: Regression

Data D:

• m examples $(x^{(i)}, y^{(i)})$ where $x^{(i)}$ is the feature vector, $y^{(i)}$ is the output variable

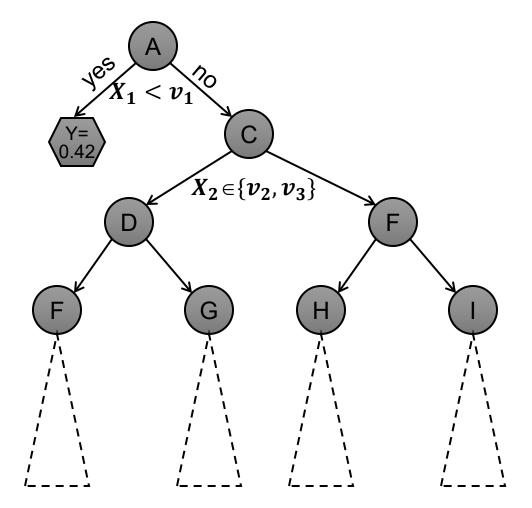
• Task:

Given an input data vector x predict y

9/21/2025

Decision Trees

 A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output



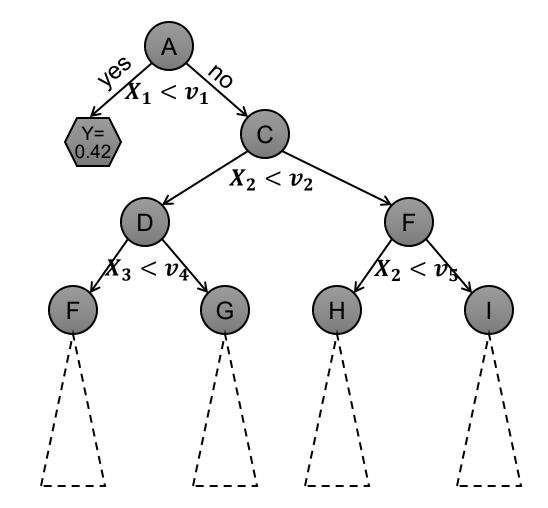
Decision Trees (1)

Decision trees:

- Split the data at each internal node
- Each leaf node makes a prediction

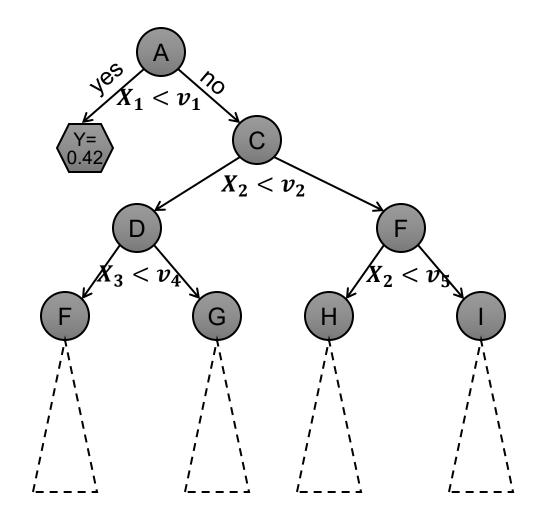
Today we focus on:

• Binary splits: $X_j < v$



How to make predictions?

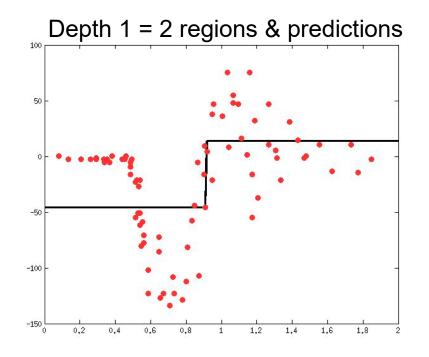
- Input: Example x
- Output: Predicted \hat{y}
- "Drop" x down the tree until it hits a leaf node
- Predict the value stored in the leaf that x hits

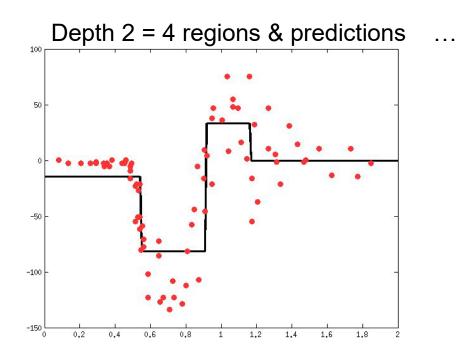


Decision trees for regression

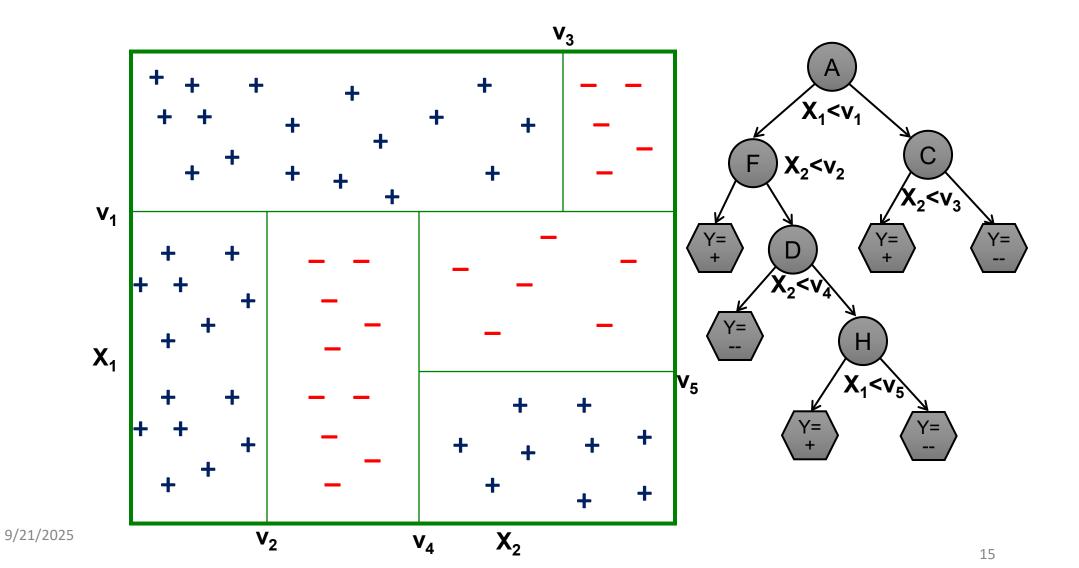
Predict real valued numbers at leaf nodes

• Examples on a single scalar feature:





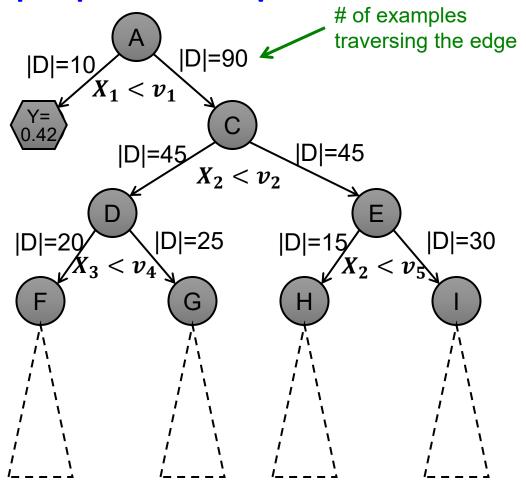
Decision Trees for classification



Learning Decision Tress

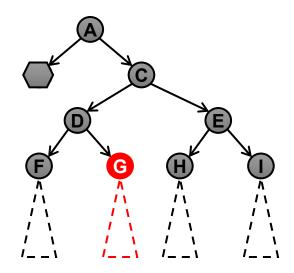
How to construct a tree?

Training dataset D*, |D*|=100 examples



How to construct a tree?

- Imagine we are currently at some node G
 - Let D_G be the data that reaches G
- There is a decision we have to make: Do we continue building the tree?



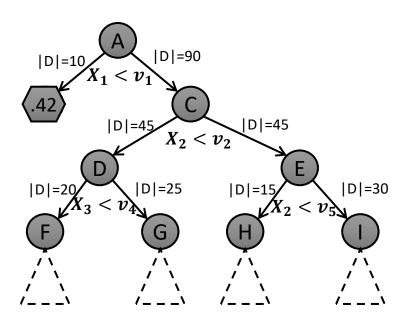
- If yes, which variable and which value do we use for a split?
 - Continue building the tree recursively
- If not, how do we make a prediction?
 - We need to build a "predictor node"

How to construct a tree?

(1) How to split? Pick attribute & value that optimizes some criterion

Information Gain

- Measures how much a given attribute X tells us about the class Y
- IG(Y | X): We must transmit Y over a binary link.
 How many bits on average would it save us if both ends of the line knew X?



When to stop?

(2) When to stop?

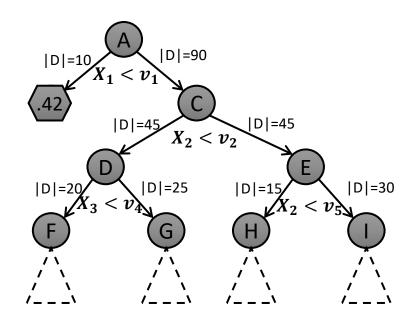
- Many different heuristic options
- Two ideas:
 - (1) When the leaf is "pure"
 - The target variable does not vary too much: $Var(y) < \varepsilon$
 - (2) When # of examples in the leaf is too small
 - For example, **/***D***/**≤**100**



How to predict?

(3) How to predict?

- Many options
 - **Regression:**
 - Predict average y of the examples in the leaf
 - Build a linear regression model on the examples in the leaf
 - Classification:
 - Predict most common **y** of the examples in the leaf

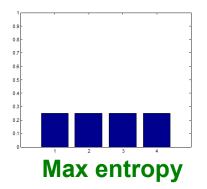


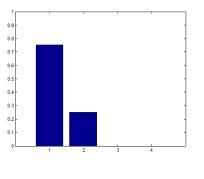
Information Gain?

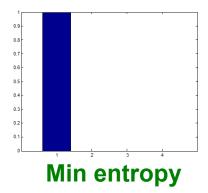
$$H(Y) = -\sum_{y} P(y) \log P(y)$$

Entropy:

- What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution?
- The entropy of Y: $H(Y) = -\sum_{j=1}^{m} p_j \log p_j$
 - "High Entropy": Y is from a uniform (boring) distribution
 - A histogram of the frequency distribution of values of Y is flat
 - "Low Entropy": Y is from a varied (peaks/valleys) distrib.
 - A histogram of the frequency distribution of values of Y would have many lows and one or two highs







Information Gain

- Def: Information Gain
 - IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

$$H(Y) = -\sum_{y} P(y) \log P(y)$$

- Suppose I want to predict Y and I have input X
 - X1 = College Major
 - *X*2 = ...
 - Y = Likes "Gladiator"

X1	X2	Υ
Math		Yes
History		No
CS		Yes
Math		No
Math		No
CS		Yes
Math		Yes
History		No

From this data we estimate

$$P(Y = Yes) = 0.5$$

Note:

$$H(Y) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = 1$$

$$H(Y|X=x) = -\sum_{y} P(y|x) \log P(y|x)$$

- Suppose I want to predict Y and I have input X
 - X1 = College Major
 - *X*2 = ...
 - **Y** = Likes "Gladiator"

X1	X2	Υ
Math		Yes
History		No
CS		Yes
Math		No
Math		No
CS		Yes
Math		Yes
History		No

Def: Specific Conditional Entropy

H(Y | X1=v) = The entropy of Y among only those records in which X1 has value v

Example:

$$H(Y|X1 = Math) = 1$$

$$\blacksquare H(Y|X1 = History) = 0$$

$$H(Y|X1 = CS) = 0$$

$$H(Y|X) = -\sum_{x} P(x) \sum_{y} P(y|x) \log P(y|x)$$

- Suppose I want to predict Y and I have input X
 - X1 = College Major
 - X2 = ...
 - **Y** = Likes "Gladiator"

X1	X2	Υ
Math		Yes
History		No
CS		Yes
Math		No
Math		No
CS		Yes
Math		Yes
History		No

Def: Conditional Entropy

- $H(Y \mid X)$ = The average specific conditional entropy of **Y**
 - = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
 - = Expected number of bits to transmit Y if both sides will know the value of X

$$= \sum_{j} P(X = v_j) H(Y|X = v_j)$$

X1

Math

CS

Math

Math

Math

History

CS

History

X2

Yes

No

Yes

No

No

Yes

Yes

No

Suppose I want to predict Y and I have input X

$\blacksquare H(Y $	$(X) = The\;a$	average specific
condi	tional entrop	oy of Y

$$= \sum_{j} P(X = v_j) H(Y|X = v_j)$$

Example:

V_{j}	P(X1=v _j)	H(Y X1=v _j)
Math	0.5	1
History	0.25	0
CS	0.25	0

So:
$$H(Y|X1)=0.5*1+0.25*0+0.25*0 = 0.5$$

Suppose I want to predict Y and I have input X

X1	X2	Υ
Math		Yes
History		No
CS		Yes
Math		No
Math		No
CS		Yes
Math		Yes
History		No

Def: Information Gain

• IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

Example:

- H(Y) = 1
- H(Y|X1) = 0.5
- Thus IG(Y|X1) = 1 0.5 = 0.5

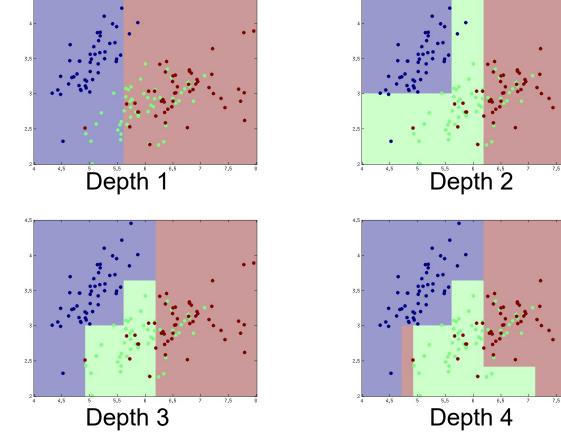
How to build decision tree

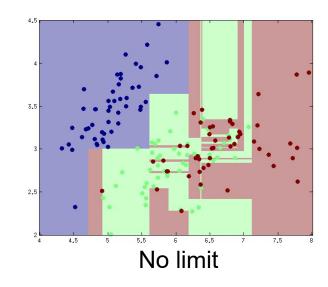
- Choose the feature and value that "decrease the entropy most = give us the largest information gain"
- Algorithms to build decision trees:
 - ID3, C4.5, ...

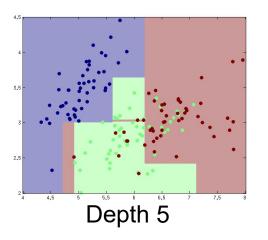
```
FUNCTION ID3(Examples, Target Attribute, Attributes)
    CREATE a new node Root
    IF all Examples have the same Target Attribute value THEN
        RETURN Root with label = that value
    END IF
    IF Attributes is empty THEN
        RETURN Root with label = most common Target Attribute value in Examples
    END IF
    Best_Attribute = Attribute with highest Information_Gain(Examples, Target Attribute, Attributes)
    Root.decision_attribute = Best_Attribute
    FOR each possible value v of Best Attribute
        ADD a new branch below Root for value v
        Examples v = \{e \in Examples \mid e.Best Attribute = v\}
        IF Examples v is empty THEN
            ADD leaf node with label = most common Target Attribute value in Examples
        ELSE
            ADD subtree ID3(Examples_v, Target_Attribute, Attributes - {Best_Attribute})
        END IF
    END FOR
    RETURN Root
END FUNCTION
```

Controlling complexity

Maximum depth cutoff

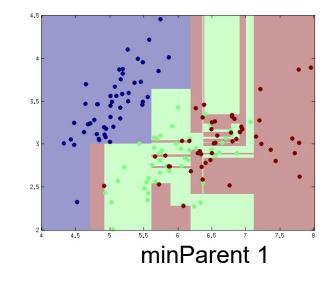


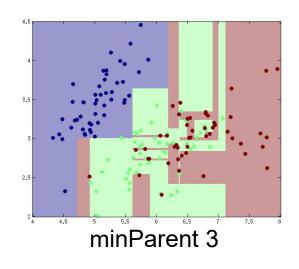


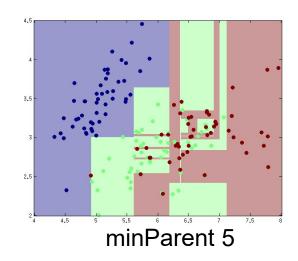


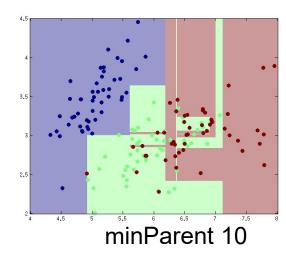
Controlling complexity

Minimum # parent data



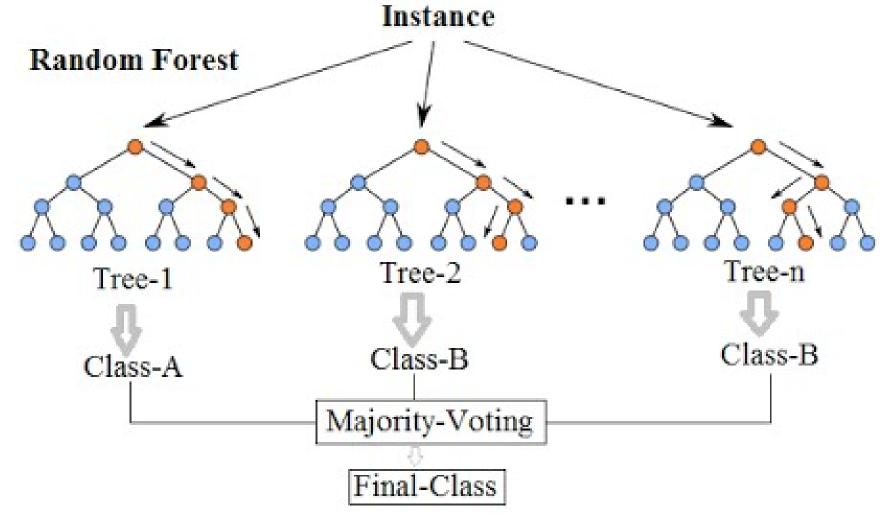






Alternate (similar): min # of data per leaf

Improvement: Random Forests



9/21/2025

Summary

- Decision trees
 - Flexible functional form
 - At each level, pick a variable and split condition
 - At leaves, predict a value
- Learning decision trees
 - Score all splits & pick best
 - Information gain, Gini index
 - Stopping criteria
- Complexity depends on depth
 - Decision stumps: very simple classifiers