
Decision Trees
Adopted from slides by Alexander Ihler and

Jure Leskovec, Anand Rajaraman, Jeff Ullman, http://www.mmds.org

http://www.mmds.org/


Supervised Learning

• Given examples of a function (𝑋𝑋,𝑌𝑌 = 𝐹𝐹(𝑋𝑋))
• Find function �𝑌𝑌 = ℎ(𝑋𝑋) to estimate 𝐹𝐹(𝑋𝑋)

• Continuous ℎ(𝑋𝑋): Regression
• Discrete ℎ(𝑋𝑋): Classification



K-Nearest neighbor regression

ref : Andreas C.Muller and Sarah Guido. 2017. Introduction to 
machine learning with pyhton



Linear regression

• ℎ 𝑥𝑥 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛



𝑘𝑘-nearest neighbor classifier

𝑘𝑘 = 1 𝑘𝑘 = 15



Example: Gaussian Bayes for Iris Data

• Fit Gaussian distribution to each class {0,1,2}

(c) Alexander Ihler 6



Linear Classifier
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Support Vector Machine



Decision Trees
• Input attributes:

• 𝒏𝒏 features/attributes: 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛
• Each 𝑥𝑥𝑗𝑗  has domain Oj 

• Categorical:  Oj = {red, blue}
• Numerical: Hj = (0, 10)

• Y is output variable with domain OY:
• Categorical: Classification, Numerical: Regression

• Data D:
• 𝒎𝒎 examples (𝒙𝒙(𝑖𝑖), 𝑦𝑦(𝑖𝑖)) where 𝒙𝒙(𝑖𝑖) is the feature vector, 
𝑦𝑦(𝑖𝑖) is the output variable

• Task:
• Given an input data vector 𝒙𝒙 predict 𝑦𝑦
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Decision Trees
• A Decision Tree is a 

tree-structured plan of 
a set of attributes to 
test in order to predict 
the output
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Decision Trees (1)

• Decision trees:
• Split the data at each

internal node
• Each leaf node 

makes a prediction

• Today we focus on:
• Binary splits: 𝑿𝑿𝒋𝒋 < 𝒗𝒗
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𝑿𝑿𝟏𝟏 < 𝒗𝒗𝟏𝟏

𝑿𝑿𝟑𝟑 < 𝒗𝒗𝟒𝟒 𝑿𝑿𝟐𝟐 < 𝒗𝒗𝟓𝟓



How to make predictions?

• Input: Example 𝒙𝒙
• Output: Predicted �𝑦𝑦

• “Drop” 𝒙𝒙  down 
the tree until it 
hits a leaf node

• Predict the value
stored in the leaf
that 𝒙𝒙  hits
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𝑿𝑿𝟐𝟐 < 𝒗𝒗𝟐𝟐

𝑿𝑿𝟏𝟏 < 𝒗𝒗𝟏𝟏

𝑿𝑿𝟑𝟑 < 𝒗𝒗𝟒𝟒 𝑿𝑿𝟐𝟐 < 𝒗𝒗𝟓𝟓



Decision trees for regression

• Predict real valued numbers at leaf nodes

• Examples on a single scalar feature:

Depth 1 = 2 regions & predictions Depth 2 = 4 regions & predictions    …



Decision Trees for classification
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Learning Decision Tress



How to construct a tree?
• Training dataset D*, |D*|=100 examples
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How to construct a tree?

• Imagine we are currently at some node G
• Let DG be the data that reaches G

• There is a decision we have
to make: Do we continue 
building the tree?

• If yes, which variable and which value  do we use for a split?
• Continue building the tree recursively

• If not, how do we make a prediction?
• We need to build a “predictor node”

9/21/2025 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
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How to construct a tree?

(1) How to split? Pick 
attribute & value that 
optimizes some criterion

• Information Gain
• Measures how much

a given attribute X tells us about the class Y 
• IG(Y | X) : We must transmit Y over a binary link. 

How many bits on average would it save us if both ends of the line knew X?

9/21/2025 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
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When to stop?

(2) When to stop?
• Many different heuristic 

options
• Two ideas:

• (1) When the leaf is “pure”
• The target variable does not

vary too much: Var(y) < ε
• (2) When # of examples in 

the leaf is too small
• For example, |D|≤ 100

209/21/2025 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu
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How to predict?

(3) How to predict?
• Many options 

• Regression:
• Predict average y of the 

examples in the leaf
• Build a linear regression model

on the examples in the leaf
• Classification: 

• Predict most common y of the 
examples in the leaf

219/21/2025 Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
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Information Gain? 
 Entropy: 

 What’s the smallest possible number of bits, on average, per 
symbol, needed to transmit a stream of symbols drawn from  
X’s distribution?

 The entropy of Y:  𝑯𝑯 𝒀𝒀 = −∑𝒋𝒋=𝟏𝟏𝒎𝒎 𝒑𝒑𝒋𝒋 𝒍𝒍𝒍𝒍𝒍𝒍𝒑𝒑𝒋𝒋
• “High Entropy”: Y is from a uniform (boring) distribution

• A histogram of the frequency distribution of values of Y is flat
• “Low Entropy”: Y is from a varied (peaks/valleys) distrib.

• A histogram of the frequency distribution of values of Y would have 
many lows and one or two highs

22Min entropyMax entropy9/21/2025
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Information Gain

• Def: Information Gain
• 𝑰𝑰𝑰𝑰(𝒀𝒀|𝑿𝑿)  = I must transmit Y. How many bits on average would it save me if 

both ends of the line knew X?
𝑰𝑰𝑰𝑰(𝒀𝒀|𝑿𝑿)  =  𝑯𝑯(𝒀𝒀)  −  𝑯𝑯(𝒀𝒀 | 𝑿𝑿)



Example
• Suppose I want to predict 𝒀𝒀 and I have input 𝑿𝑿

• 𝑿𝑿𝟏𝟏 = College Major
• 𝑿𝑿𝟐𝟐 = …
• 𝒀𝒀 = Likes “Gladiator”
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 From this data we estimate
 𝑃𝑃(𝑌𝑌 =  𝑌𝑌𝑌𝑌𝑌𝑌)  =  0.5

 Note:

 𝐻𝐻(𝑌𝑌) = −1
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2
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2
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2
)  = 1
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Example
• Suppose I want to predict 𝒀𝒀 and I have input 𝑿𝑿
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 Def: Specific Conditional Entropy
 H(Y | X1=v) = The entropy of Y among 

only those records in which X1 has 
value v
 Example:
 𝐻𝐻(𝑌𝑌|𝑋𝑋1 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀)  =  1
 𝐻𝐻(𝑌𝑌|𝑋𝑋1 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)  =  0
 𝐻𝐻(𝑌𝑌|𝑋𝑋1 = 𝐶𝐶𝐶𝐶)  =  09/21/2025
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 Def: Conditional Entropy
 𝑯𝑯(𝒀𝒀 | 𝑿𝑿)  = The average specific 

conditional entropy of Y
 = if you choose a record at random what 

will be the conditional entropy of Y, 
conditioned on that row’s value of X
 = Expected number of bits to transmit Y 

if both sides will know the value of X

 = ∑𝒋𝒋𝑷𝑷 𝑿𝑿 = 𝒗𝒗𝒋𝒋 𝑯𝑯(𝒀𝒀|𝑿𝑿 = 𝒗𝒗𝒋𝒋)9/21/2025
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Example
• Suppose I want to predict 𝒀𝒀 and I have input 𝑿𝑿
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 𝑯𝑯(𝒀𝒀 | 𝑿𝑿)  = The average specific 
conditional entropy of 𝒀𝒀

= �
𝒋𝒋

𝑷𝑷 𝑿𝑿 = 𝒗𝒗𝒋𝒋 𝑯𝑯(𝒀𝒀|𝑿𝑿 = 𝒗𝒗𝒋𝒋)

 Example:

 So: H(Y|X1)=0.5*1+0.25*0+0.25*0 = 0.5

Vj P(X1=vj) H(Y|X1=vj)

Math 0.5 1
History 0.25 0
CS 0.25 0
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Math No
Math No
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Example
• Suppose I want to predict 𝒀𝒀 and I have input 𝑿𝑿

28

 Def: Information Gain
 𝑰𝑰𝑰𝑰(𝒀𝒀|𝑿𝑿)  = I must transmit Y. How 

many bits on average would it save 
me if both ends of the line knew X?

𝑰𝑰𝑰𝑰(𝒀𝒀|𝑿𝑿)  =  𝑯𝑯(𝒀𝒀)  −  𝑯𝑯(𝒀𝒀 | 𝑿𝑿)

 Example:
 H(Y) = 1
 H(Y|X1) = 0.5
 Thus IG(Y|X1) = 1 – 0.5 = 0.59/21/2025

X1 X2 Y

Math … Yes
History No
CS Yes
Math No
Math No
CS Yes
Math Yes
History No



How to build decision tree

• Choose the feature and value that “decrease the entropy most = give 
us the largest information gain”

• Algorithms to build decision trees:
• ID3, C4.5, …



FUNCTION ID3(Examples, Target_Attribute, Attributes)
    CREATE a new node Root
    IF all Examples have the same Target_Attribute value THEN
        RETURN Root with label = that value
    END IF
    IF Attributes is empty THEN
        RETURN Root with label = most common Target_Attribute value in Examples
    END IF
    Best_Attribute = Attribute with highest Information_Gain(Examples, Target_Attribute, Attributes)
    Root.decision_attribute = Best_Attribute
    FOR each possible value v of Best_Attribute
        ADD a new branch below Root for value v
        Examples_v = {e ∈ Examples | e.Best_Attribute = v}
        IF Examples_v is empty THEN
            ADD leaf node with label = most common Target_Attribute value in Examples
        ELSE
            ADD subtree ID3(Examples_v, Target_Attribute, Attributes − {Best_Attribute})
        END IF
    END FOR
    RETURN Root
END FUNCTION



Controlling complexity

• Maximum depth cutoff

Depth 1 Depth 2

Depth 3 Depth 4 Depth 5

No limit



Controlling complexity

• Minimum # parent data

• Alternate (similar): min # of data per leaf

minParent 1

minParent 3 minParent 5 minParent 10



Improvement: Random Forests

9/21/2025 35



Summary

• Decision trees
• Flexible functional form
• At each level, pick a variable and split condition
• At leaves, predict a value

• Learning decision trees
• Score all splits & pick best

• Information gain, Gini index
• Stopping criteria

• Complexity depends on depth
• Decision stumps: very simple classifiers
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