Tentative schedule for CSCE 50603 -- 001 Machine Learning

Date

Topic

Lecture Slides

Additional Materials

Recomm. Reading

8/18

Introduction to machine learning

1-intro

01_intro.ipynb

Anaconda.pdf

data_code

Hastie Ch.1, Shwartz Ch.1

Zhang Ch.2

8/20

8/22

Software for machine learning 1

 

8/25

Preliminaries

2-preliminary

preliminary.ipynb

8/27

K nearest neighbors

3-knn

02_kNNs.ipynb

Hastie Ch.2.3.2, 2.3.3

Shwartz Ch.19.1

8/29

Linear regression and gradient descent

4-linear-regression

03_linear_regression.ipynb

Hastie Ch.3.1, 3.2, 3.4.1, 3.4.2

Shwartz Ch.9.2

9/1

Labor Day holiday

 

 

 

9/3

Linear regression and gradient descent

 

 

 

9/5

Bayes classifiers

5-bayes-classfier

5.5-measuring-errors

04_classification_metrics.ipynb

Hastie Ch.6.6.3

Shwartz Ch.24.2

9/8

9/10

Linear classifiers: perceptron, logistic regression, and SVM

6-linear-classifier

7-svm

05_logistic_regression.ipynb

06_SVM.ipynb

Hastie Ch.4.1, 4.4.1

Hastie Ch.12.1, 12.2

9/12

9/15

9/17

9/19

(Bonus) The kernel trick

8-kernel

07_SVM_RBF.ipynb

Hastie Ch.12.3.1

9/22

Decision tree

9-decision-tree

08_decision_tress.ipynb

Hastie Ch.9.2.1, 9.2.2, 9.2.3

9/24

Neural networks

10-nn

09_nn.ipynb

Hastie Ch.11.3, 11.4, 11.5

9/26

9/29

10/1

10/3

Half review

 

 

 

10/6

Mid-term exam

 

 

 

10/8

(Bonus) PAC learning

 

 

Hastie Ch.7.9

Murphy Ch.6.5.4

10/10

Software for machine learning 2

 

 

 

10/13

Fall Break

 

 

10/15

Hierarchical clustering

 

 

Hastie Ch.14.3.6, 14.3.12

10/17

K-means algorithm

 

 

10/20

EM algorithm

 

 

Hastie Ch.8.5

10/22

(Bonus) Fair machine learning

 

 

 

10/24

 

 

 

10/27

(Bonus) Intro to deep learning

 

 

 

10/29

 

 

10/31

(Bonus) Intro to reinforcement learning

 

 

 

11/3

 

 

11/5

(Bonus) Causal discovery and inference

 

 

 

11/7

 

 

 

11/10

Project presentations

 

 

 

11/12

 

 

 

11/14

 

 

 

11/17

 

 

 

11/19

 

 

 

11/21

 

 

 

11/24

 

 

 

11/26

Thanksgiving break

 

 

 

11/28

 

 

 

12/1

Final review

 

 

 

12/3

Q&A