Tentative
schedule for CSCE 50603 -- 001 Machine Learning
Date |
Topic |
Lecture
Slides |
Additional Materials |
Recomm.
Reading |
8/18 |
Introduction to
machine learning |
Hastie Ch.1, Shwartz Ch.1 Zhang Ch.2 |
||
8/20 |
||||
8/22 |
Software for machine learning 1 |
|
||
8/25 |
Preliminaries |
|||
8/27 |
K nearest neighbors |
Hastie Ch.2.3.2, 2.3.3 Shwartz Ch.19.1 |
||
8/29 |
Linear regression and
gradient descent |
Hastie Ch.3.1, 3.2, 3.4.1, 3.4.2 Shwartz Ch.9.2 |
||
9/1 |
Labor Day holiday |
|
|
|
9/3 |
Linear regression and
gradient descent |
|
|
|
9/5 |
Bayes classifiers |
Hastie Ch.6.6.3 Shwartz Ch.24.2 |
||
9/8 |
||||
9/10 |
Linear classifiers: perceptron, logistic regression, and SVM |
Hastie Ch.4.1, 4.4.1 Hastie Ch.12.1, 12.2 |
||
9/12 |
||||
9/15 |
||||
9/17 |
||||
9/19 |
(Bonus) The kernel
trick |
Hastie Ch.12.3.1 |
||
9/22 |
Decision tree |
Hastie Ch.9.2.1, 9.2.2, 9.2.3 |
||
9/24 |
Neural networks |
Hastie Ch.11.3, 11.4, 11.5 |
||
9/26 |
||||
9/29 |
||||
10/1 |
||||
10/3 |
Half review |
|
|
|
10/6 |
Mid-term exam |
|
|
|
10/8 |
(Bonus) PAC learning |
|
|
Hastie Ch.7.9 Murphy Ch.6.5.4 |
10/10 |
Software for machine learning 2 |
|
|
|
10/13 |
Fall Break |
|
|
|
10/15 |
Hierarchical
clustering |
|
|
Hastie Ch.14.3.6, 14.3.12 |
10/17 |
K-means algorithm |
|
|
|
10/20 |
EM algorithm |
|
|
Hastie Ch.8.5 |
10/22 |
(Bonus) Fair machine learning |
|
|
|
10/24 |
|
|
|
|
10/27 |
(Bonus) Intro to deep learning |
|
|
|
10/29 |
|
|
||
10/31 |
(Bonus) Intro to reinforcement learning |
|
|
|
11/3 |
|
|
||
11/5 |
(Bonus) Causal
discovery and inference |
|
|
|
11/7 |
|
|
|
|
11/10 |
Project presentations |
|
|
|
11/12 |
|
|
|
|
11/14 |
|
|
|
|
11/17 |
|
|
|
|
11/19 |
|
|
|
|
11/21 |
|
|
|
|
11/24 |
|
|
|
|
11/26 |
Thanksgiving break |
|
|
|
11/28 |
|
|
|
|
12/1 |
Final review |
|
|
|
12/3 |
Q&A |
|
|